35 research outputs found

    THE USE OF AUTHENTIC VIDEOS IN TEACHING RUSSIAN CONVERSATION OUTSIDE THE LANGUAGE ENVIRONMENT

    Get PDF
    The use of authentic films offers great opportunities for developing the range of skills and abilities required in all aspects of speech activity. This type of activity is particularly important for students who study Russian outside the language environment. This article examines the criteria for selecting video films as linguo-didactic material, which can be used in teaching foreign higher education students with advanced language skills based on modern methodological principles, i.e. communicative approaches and linguo-cultural information about the studied country, as well as increasing personal motivation among students for learning. Analyzing the results of a trial survey conducted among foreign students, as well as identifying the linguistic and extra-linguistic features of selected films, the authors suggest ways to use video with the help of new technologies. Article visualizations

    Immunochip analysis identifies multiple susceptibility loci for systemic sclerosis

    Get PDF
    In this study, 1,833 systemic sclerosis (SSc) cases and 3,466 controls were genotyped with the Immunochip array. Classical alleles, amino acid residues, and SNPs across the human leukocyte antigen (HLA) region were imputed and tested. These analyses resulted in a model composed of six polymorphic amino acid positions and seven SNPs that explained the observed significant associations in the region. In addition, a replication step comprising 4,017 SSc cases and 5,935 controls was carried out for several selected non-HLA variants, reaching a total of 5,850 cases and 9,401 controls of European ancestry. Following this strategy, we identified and validated three SSc risk loci, including DNASE1L3 at 3p14, the SCHIP1-IL12A locus at 3q25, and ATG5 at 6q21, as well as a suggested association of the TREH-DDX6 locus at 11q23. The associations of several previously reported SSc risk loci were validated and further refined, and the observed peak of association in PXK was related to DNASE1L3. Our study has increased the number of known genetic associations with SSc, provided further insight into the pleiotropic effects of shared autoimmune risk factors, and highlighted the power of dense mapping for detecting previously overlooked susceptibility loci

    Gene-level association analysis of systemic sclerosis: A comparison of African-Americans and White populations

    Get PDF
    All authors: Olga Y. Gorlova , Yafang Li, Ivan Gorlov, Jun Ying, Wei V. Chen, Shervin Assassi, John D. Reveille, Frank C. Arnett, Xiaodong Zhou, Lara Bossini-Castillo, Elena Lopez-Isac, Marialbert Acosta-Herrera, Peter K. Gregersen, Annette T. Lee, Virginia D. Steen, Barri J. Fessler, Dinesh Khanna, Elena Schiopu, Richard M. Silver, Jerry A. Molitor, Daniel E. Furst, Suzanne Kafaja, Robert W. Simms, Robert A. Lafyatis, Patricia Carreira, Carmen Pilar Simeon, Ivan Castellvi, Emma Beltran, Norberto Ortego, Christopher I. Amos, Javier Martin, Maureen D. Mayes.Data Availability Statement: Genetic data is available from dbGaP repository (https://www.ncbi. nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_ id=phs000357.v1.p1).Gene-level analysis of ImmunoChip or genome-wide association studies (GWAS) data has not been previously reported for systemic sclerosis (SSc, scleroderma). The objective of this study was to analyze genetic susceptibility loci in SSc at the gene level and to determine if the detected associations were shared in African-American and White populations, using data from ImmunoChip and GWAS genotyping studies. The White sample included 1833 cases and 3466 controls (956 cases and 2741 controls from the US and 877 cases and 725 controls from Spain) and the African American sample, 291 cases and 260 controls. In both Whites and African Americans, we performed a gene-level analysis that integrates association statistics in a gene possibly harboring multiple SNPs with weak effect on disease risk, using Versatile Gene-based Association Study (VEGAS) software. The SNP-level analysis was performed using PLINK v.1.07. We identified 4 novel candidate genes (STAT1, FCGR2C, NIPSNAP3B, and SCT) significantly associated and 4 genes (SERBP1, PINX1, TMEM175 and EXOC2) suggestively associated with SSc in the gene level analysis in White patients. As an exploratory analysis we compared the results on Whites with those from African Americans. Of previously established susceptibility genes identified in Whites, only TNFAIP3 was significant at the nominal level (p = 6.13x10-3) in African Americans in the gene-level analysis of the ImmunoChip data. Among the top suggestive novel genes identified in Whites based on the ImmunoChip data, FCGR2C and PINX1 were only nominally significant in African Americans (p = 0.016 and p = 0.028, respectively), while among the top novel genes identified in the gene-level analysis in African Americans, UNC5C (p = 5.57x10-4) and CLEC16A (p = 0.0463) were also nominally significant in Whites. We also present the gene-level analysis of SSc clinical and autoantibody phenotypes among Whites. Our findings need to be validated by independent studies, particularly due to the limited sample size of African Americans.Funding was provided to MDM by the National Institutes of Health (NIH) the National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS https://www.niams.nih.gov/) Centers of Research Translation (CORT) P50-AR054144, NIH grant N01-AR-02251 and R01-AR-055258, and the Department of Defense (DD) Congressionally Directed Medical Research Program (http://cdmrp.army.mil/) W81XWH-07-1-011 and WX81XWH-13-1-0452 for the collection, analysis and interpretation of the data

    Impact of HPV vaccination and cervical screening on cervical cancer elimination: a comparative modelling analysis in 78 low-income and lower-middle-income countries.

    Get PDF
    BACKGROUND: The WHO Director-General has issued a call for action to eliminate cervical cancer as a public health problem. To help inform global efforts, we modelled potential human papillomavirus (HPV) vaccination and cervical screening scenarios in low-income and lower-middle-income countries (LMICs) to examine the feasibility and timing of elimination at different thresholds, and to estimate the number of cervical cancer cases averted on the path to elimination. METHODS: The WHO Cervical Cancer Elimination Modelling Consortium (CCEMC), which consists of three independent transmission-dynamic models identified by WHO according to predefined criteria, projected reductions in cervical cancer incidence over time in 78 LMICs for three standardised base-case scenarios: girls-only vaccination; girls-only vaccination and once-lifetime screening; and girls-only vaccination and twice-lifetime screening. Girls were vaccinated at age 9 years (with a catch-up to age 14 years), assuming 90% coverage and 100% lifetime protection against HPV types 16, 18, 31, 33, 45, 52, and 58. Cervical screening involved HPV testing once or twice per lifetime at ages 35 years and 45 years, with uptake increasing from 45% (2023) to 90% (2045 onwards). The elimination thresholds examined were an average age-standardised cervical cancer incidence of four or fewer cases per 100 000 women-years and ten or fewer cases per 100 000 women-years, and an 85% or greater reduction in incidence. Sensitivity analyses were done, varying vaccination and screening strategies and assumptions. We summarised results using the median (range) of model predictions. FINDINGS: Girls-only HPV vaccination was predicted to reduce the median age-standardised cervical cancer incidence in LMICs from 19·8 (range 19·4-19·8) to 2·1 (2·0-2·6) cases per 100 000 women-years over the next century (89·4% [86·2-90·1] reduction), and to avert 61·0 million (60·5-63·0) cases during this period. Adding twice-lifetime screening reduced the incidence to 0·7 (0·6-1·6) cases per 100 000 women-years (96·7% [91·3-96·7] reduction) and averted an extra 12·1 million (9·5-13·7) cases. Girls-only vaccination was predicted to result in elimination in 60% (58-65) of LMICs based on the threshold of four or fewer cases per 100 000 women-years, in 99% (89-100) of LMICs based on the threshold of ten or fewer cases per 100 000 women-years, and in 87% (37-99) of LMICs based on the 85% or greater reduction threshold. When adding twice-lifetime screening, 100% (71-100) of LMICs reached elimination for all three thresholds. In regions in which all countries can achieve cervical cancer elimination with girls-only vaccination, elimination could occur between 2059 and 2102, depending on the threshold and region. Introducing twice-lifetime screening accelerated elimination by 11-31 years. Long-term vaccine protection was required for elimination. INTERPRETATION: Predictions were consistent across our three models and suggest that high HPV vaccination coverage of girls can lead to cervical cancer elimination in most LMICs by the end of the century. Screening with high uptake will expedite reductions and will be necessary to eliminate cervical cancer in countries with the highest burden. FUNDING: WHO, UNDP, UN Population Fund, UNICEF-WHO-World Bank Special Program of Research, Development and Research Training in Human Reproduction, Canadian Institute of Health Research, Fonds de recherche du Québec-Santé, Compute Canada, National Health and Medical Research Council Australia Centre for Research Excellence in Cervical Cancer Control

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Современные технологии в области РКИ

    No full text
    [[notice]]補正完

    Dose-escalation of human anti-interferon-α receptor monoclonal antibody MEDI-546 in subjects with systemic sclerosis: a phase 1, multicenter, open label study

    Get PDF
    INTRODUCTION: Type I interferons (IFNs) are implicated in the pathogenesis of systemic sclerosis (SSc). MEDI-546 is an investigational human monoclonal antibody directed against the type I IFN receptor. This Phase 1 study evaluated the safety/tolerability, pharmacokinetics (PK), immunogenicity, and pharmacodynamics (PD) of single and multiple intravenous doses of MEDI-546 in adults with SSc. METHODS: Subjects (≥18 years) with SSc were enrolled in an open-label, dose-escalation study to receive single (0.1, 0.3, 1.0, 3.0, 10.0, or 20.0 mg/kg), or 4 weekly intravenous doses (0.3, 1.0, or 5.0 mg/kg/week) of MEDI-546. Subjects were followed for 12 weeks. Safety assessments included adverse events (AEs), laboratory results, and viral monitoring. Blood samples were collected from all subjects for determination of PK, presence of anti-drug antibodies (ADAs), and expression of type I IFN-inducible genes. RESULTS: Of 34 subjects (mean age 47.4 years), 32 completed treatment and 33 completed the study. Overall, 148 treatment-emergent AEs (TEAEs) were reported (68.9% mild, 27.7% moderate). TEAEs included one grade 1 infusion reaction (5.0 mg/kg/week multiple dose). Of 4 treatment-emergent serious AEs (skin ulcer, osteomyelitis, vertigo, and chronic myelogenous leukemia (CML)), only CML (1.0 mg/kg/week multiple dose) was considered possibly treatment-related. MEDI-546 exhibited non-linear PK at lower doses. ADAs were detected in 5 subjects; no apparent impact on PK was observed. Peak inhibition of the type I IFN signature in whole blood was achieved within 1 day and in skin after 7 days. CONCLUSION: The safety/tolerability, PK, and PD profiles observed in this study support further clinical development of MEDI-546. TRIAL REGISTRATION: ClinicalTrials.gov NCT0093068
    corecore