11 research outputs found

    Integration of Amplitude and Phase Statistics for Complete Artifact Removal in Independent Components of Neuromagnetic Recordings

    No full text
    In magnetoencephalography (MEG) and electroencephalography (EEG), independent component analysis is widely applied to separate brain signals from artifact components. A number of different methods have been proposed for the automatic or semiautomatic identification of artifact components. Most of the proposed methods are based on amplitude statistics of the decomposed MEG/EEG signal. We present a fully automated approach based on amplitude and phase statistics of decomposed MEG signals for the isolation of biological artifacts such as ocular, muscle, and cardiac artifacts (CAs). The performance of different artifact identification measures was investigated. In particular, we show that phase statistics is a robust and highly sensitive measure to identify strong and weak components that can be attributed to cardiac activity, whereas a combination of different measures is needed for the identification of artifacts caused by ocular and muscle activity. With the introduction of a rejection performance parameter, we are able to quantify the rejection quality for eye blinks and CAs. We demonstrate in a set of MEG data the good performance of the fully automated procedure for the removal of cardiac, ocular, and muscle artifacts. The new approach allows routine application to clinical measurements with small effect on the brain signal

    Metal-insulator transitions in layered ruthenates

    No full text
    Our abilities in scene understanding, which allow us to perceive the 3D structure of our surroundings and intuitively recognise the objects we see, are things that we largely take for granted, but for robots, the task of understanding large scenes quickly remains extremely challenging. Recently, scene understanding approaches based on 3D reconstruction and semantic segmentation have become popular, but existing methods either do not scale, fail outdoors, provide only sparse reconstructions or are rather slow. In this paper, we build on a recent hash-based technique for large-scale fusion and an efficient mean-field inference algorithm for densely-connected CRFs to present what to our knowledge is the first system that can perform dense, large-scale, outdoor semantic reconstruction of a scene in (near) real time. We also present a 'semantic fusion' approach that allows us to handle dynamic objects more effectively than previous approaches. We demonstrate the effectiveness of our approach on the KITTI dataset, and provide qualitative and quantitative results showing high-quality dense reconstruction and labelling of a number of scenes

    Quellen- und Literaturverzeichnis

    No full text

    Linse

    No full text

    Die chronisch-progressive exteriore Ophthalmoplegie

    No full text
    corecore