20 research outputs found
Transferring avalanches between paths
Estimates of exceedance probabilities of runout lengths of avalanches for a specific path can rarely be based on measured avalanches in that slope alone, if they are to become statistically reliable. Thus one has, directly or indirectly, to include information of known runout lengths in other paths, i.e. to transfer runout lengths between paths. An attempt is made to classify such transfer methods, including both topographical methods that only make use of information on the shape of the path, such as methods based on runout ratios and a/ß-models, as well as physical methods which also make use of physical models, simulating the avalanche as it runs down the path. By introducing a specific standard slope all avalanches in a given dataset can be transferred to that slope. The length of the transferred avalanche in the standard slope then becomes a slope-independent measure of its length. Using an Icelandic dataset of 196 avalanches we demonstrate how estimates of exceedance probabilities of run out lengths may vary with the choice of transfer method and how the order of the slope-independent lengths of the avalanches in the dataset will vary. The implication for avalanche risk assessment is briefly discussed
New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.
Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes
Global assessment of marine plastic exposure risk for oceanic birds
Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species
Global assessment of marine plastic exposure risk for oceanic birds
Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species
Global assessment of marine plastic exposure risk for oceanic birds
Plastic pollution is distributed patchily around the world's oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species.B.L.C., C.H., and A.M. were funded by the Cambridge Conservation Initiative’s Collaborative Fund sponsored by the Prince Albert II of Monaco Foundation. E.J.P. was supported by the Natural Environment Research Council C-CLEAR doctoral training programme (Grant no. NE/S007164/1). We are grateful to all those who assisted with the collection and curation of tracking data. Further details are provided in the Supplementary Acknowledgements. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.Peer reviewe
Recommended from our members
A Dynamic Energy Budget (DEB) model for the energy usage and reproduction of the Icelandic capelin (Mallotus villosus)
We apply a Dynamic Energy Budget (DEB) model to the Icelandic capelin (Mallotus villosus) and introduce a new state variable to capture the roe production of individual fish. Species-specific coefficients are found for the capelin such as the shape-coefficient and the Arrhenius temperature. We show how to link the DEB model to measurable quantities such as weight, length, fat, and roe content. We use data on measured three year old female capelin from the 1999-2000 season from the Marine Research Institute of Iceland (MRI) and Matis, an Icelandic Food and Biotech R&D. We then find plausible parameter values for the DEB model by fitting the output of the model to these data. We obtain good fits between theory and observations, and the DEB model successfully reproduces weight, length, fat percentage and roe percentage of capelin. We discuss the effect of maturity on the spawning route of capelin, and describe how we intend to incorporate these results with an interacting particle model for the spawning migration of capelin
Recommended from our members
Modeling and Simulations of the Spawning Migration of Pelagic Fish
We model the spawning migration of the Icelandic capelin stock using an interacting particle model with added environmental fields. Without artificial forcing terms or a homing instinct, we qualitatively reproduce several observed spawning migrations using available temperature data and approximated currents. The simulations include orders of magnitude more particles than many similar models, affecting the global behavior of the system. Without environmental fields, we analyze how various parameters scale with the number of particles. In particular we present scaling behavior between the size of the time step, radii of the sensory zones and the number of particles in the system. We then discuss incorporating environmental data into the model
Linked open data for memory institutions : implementation handbook : YEAH! project deliverable no: 3
This report is telling the tale of three archives that collaborated in the YEAH! project to learn how to make use of the Linked Open Data (LOD). The six sections of the report first describe the main concepts of Open Data and Linked Open Data and the business case for using these in memory institutions. This is followed by a recommendation for a six-stage process for making a cultural heritage collection available as linked open data. The report does not describe the entire LOD project planning and execution cycle in memory institutions, because these projects will serve different purposes in different institutions and will be built around different use cases. Instead, the handbook presents the core activities that every project will have to undertake, split into six stages that build on one another yet allow for iterations in the process. Each workflow stage is described as a task-list that can be checked off at the end of the stage, and supported with references to tools and additional information sources.The YEAH! project, funded by three Nordic and Baltic countries to collaboratively enhance access to public information, is a cooperation project between the National Archives in Iceland, Sweden and Estonia, Luleå University of Technology and Estonian Business Archives.Godkänd; 2014; 20140506 (marrun