66 research outputs found

    Feasibility and Environmental Sustainability of a 103.5 kWp floating Photovoltaic Electrical System with a Case Study in a Hydroelectric Power Plant, Santa Clara Hpp, Located in the South of Brazil Region

    Full text link
    Typical environmental problems associated with the implementation of solar photovoltaic systems for the generation of peak electrical energy, on a larger scale, such as on the order of 1 MWp, is in the occupied area, usually more than 3 km2. This can be minimized by the use of water parks or water dam’s reservoir, small and large hydroelectric power plants dams. Both the terrestrial and aquatic systems can impact the site, the first one, for the need to promote earthworks, removal of extensive green areas in the surroundings, installation of new transmission line, among others; and the second, despite the fact that a flat surface is already used and that there is no need for new civil procedures for its installation and can normally take advantage of the existing power transmission line, may cause changes in the biota of the reservoir, depending on the shading areas on the surface of the lake. Due to these facts, this research was proposed to investigate, parameterize and tropicalize an electric power generation system based on floating silicon photovoltaic cell panels installed in the Santa Clara HPP reservoir, in terms of peak power, durability, aspects and environmental impacts, with the study of possible evolutionary improvements of the project such as "tracking" or solar tracking, as well as dynamism of the structure, allowing the shadow area to be shifted over time, minimizing its effects in the local biota

    Cloning, expression and characterization of l-asparaginase from Withania somnifera L. for large scale production

    Get PDF
    l-Asparaginase (E.C. 3.5.1.1) is used as a therapeutic agent in the treatment of acute childhood lymphoblastic leukemia. It is found in a variety of organisms such as microbes, plants and mammals. In plants, l-asparaginase enzymes are required to catalyze the release of ammonia from asparagine, which is the main nitrogen-relocation molecule in these organisms. An Indian medicinal plant, Withania somnifera was reported as a novel source of l-asparaginase. l-Asparaginase from W. somnifera was cloned and overexpressed in E. coli. The enzymatic properties of the recombinant enzyme were investigated and the kinetic parameters (Km, kcat) for a number of substrates were determined. The kinetic parameters of selected substrates were determined at various pH and the pH- and temperature-dependence profiles were analyzed. WA gene successfully cloned into E. coli BL21 (DE3) showed high asparaginase activity with a specific activity of 17.3 IU/mg protein

    Comparative Functional Genomics of Salt Stress in Related Model and Cultivated Plants Identifies and Overcomes Limitations to Translational Genomics

    Get PDF
    One of the objectives of plant translational genomics is to use knowledge and genes discovered in model species to improve crops. However, the value of translational genomics to plant breeding, especially for complex traits like abiotic stress tolerance, remains uncertain. Using comparative genomics (ionomics, transcriptomics and metabolomics) we analyzed the responses to salinity of three model and three cultivated species of the legume genus Lotus. At physiological and ionomic levels, models responded to salinity in a similar way to crop species, and changes in the concentration of shoot Cl− correlated well with tolerance. Metabolic changes were partially conserved, but divergence was observed amongst the genotypes. Transcriptome analysis showed that about 60% of expressed genes were responsive to salt treatment in one or more species, but less than 1% was responsive in all. Therefore, genotype-specific transcriptional and metabolic changes overshadowed conserved responses to salinity and represent an impediment to simple translational genomics. However, ‘triangulation’ from multiple genotypes enabled the identification of conserved and tolerant-specific responses that may provide durable tolerance across species

    Systems biology and metabolic modelling unveils limitations to polyhydroxybutyrate accumulation in sugarcane leaves; lessons for C4 engineering

    Get PDF
    In planta production of the bioplastic polyhydroxybutyrate (PHB) is one important way in which plant biotechnology can address environmental problems and emerging issues related to peak oil. However, high biomass C4 plants such as maize, switch grass and sugarcane develop adverse phenotypes including stunting, chlorosis and reduced biomass as PHB levels in leaves increase. In this study, we explore limitations to PHB accumulation in sugarcane chloroplasts using a systems biology approach, coupled with a metabolic model of C4 photosynthesis. Decreased assimilation was evident in high PHB-producing sugarcane plants, which also showed a dramatic decrease in sucrose and starch content of leaves. A subtle decrease in the C/N ratio was found which was not associated with a decrease in total protein content. An increase in amino acids used for nitrogen recapture was also observed. Based on the accumulation of substrates of ATP-dependent reactions, we hypothesized ATP starvation in bundle sheath chloroplasts. This was supported by mRNA differential expression patterns. The disruption in ATP supply in bundle sheath cells appears to be linked to the physical presence of the PHB polymer which may disrupt photosynthesis by scattering photosynthetically active radiation and/or physically disrupting thylakoid membranes

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)

    Sewage sludges on the willow plantation

    No full text
    W pracy podano analizę danych literaturowych dotyczącą ilości produkowanych osadów ściekowych i możliwości ich ostatecznego zagospodarowania. W metodach zwrócono uwagę na wykorzystanie osadów ściekowych jako nawozu pod uprawę wierzby energetycznej.This paper presents literature data analysis concerning amount of sewage sludge produced in Poland and the way of sewage sludge final management. Utilisation of sewage sludge as an energy willow fertiliser was noticed in methods given in the paper

    Asparaginase from the testa of developing lupin and pea seeds.

    No full text
    Potassium independent asparaginase has been purified from the testa of maturing seeds of Lupinus polyphyllus. The enzyme has a Mr of 71 × 103 and is composed of two subunits of Mr 35–36 × 103. Antisera raised against the purified asparaginase cross-reacted with a protein of similar characteristics isolated from the cotyledons and leaves of L. polyphyllus but no reaction was detected with extracts from the roots and nodules following Western blot analysis. Potassium dependent asparaginase was purified to a lesser extent from the testa of pea seeds and was shown to have a Mr of 61 × 103. The potassium independent and dependent enzymes appear to be distinct proteins with different immunological characteristics. The proportion of the two enzymes varies with plant species, organ and developmental age
    corecore