226 research outputs found

    High-throughput enzyme evolution in Saccharomyces cerevisiae using a synthetic RNA switch

    Get PDF
    Metabolic engineering can produce a wide range of bulk and fine chemicals using renewable resources. These approaches frequently require high levels of activity from multiple heterologous enzymes. Directed evolution techniques have been used to improve the activity of a wide range of enzymes but can be difficult to apply when the enzyme is used in whole cells. To address this limitation, we developed generalizable in vivo biosensors using engineered RNA switches to link metabolite concentrations and GFP expression levels in living cells. Using such a sensor, we quantitatively screened large enzyme libraries in high throughput based on fluorescence, either in clonal cultures or in single cells by fluorescence activated cell sorting (FACS). By iteratively screening libraries of a caffeine demethylase, we identified beneficial mutations that ultimately increased the enzyme activity in vivo by 33 fold and the product selectivity by 22 fold. As aptamer selection strategies allow RNA switches to be readily adapted to recognize new small molecules, these RNA-based screening techniques are applicable to a broad range of enzymes and metabolic pathways

    A modular and extensible RNA-based gene-regulatory platform for engineering cellular function

    Get PDF
    Engineered biological systems hold promise in addressing pressing human needs in chemical processing, energy production, materials construction, and maintenance and enhancement of human health and the environment. However, significant advancements in our ability to engineer biological systems have been limited by the foundational tools available for reporting on, responding to, and controlling intracellular components in living systems. Portable and scalable platforms are needed for the reliable construction of such communication and control systems across diverse organisms. We report an extensible RNA-based framework for engineering ligand-controlled gene-regulatory systems, called ribozyme switches, that exhibits tunable regulation, design modularity, and target specificity. These switch platforms contain a sensor domain, comprised of an aptamer sequence, and an actuator domain, comprised of a hammerhead ribozyme sequence. We examined two modes of standardized information transmission between these domains and demonstrate a mechanism that allows for the reliable and modular assembly of functioning synthetic RNA switches and regulation of ribozyme activity in response to various effectors. In addition to demonstrating examples of small molecule-responsive, in vivo functional, allosteric hammerhead ribozymes, this work describes a general approach for the construction of portable and scalable gene-regulatory systems. We demonstrate the versatility of the platform in implementing application-specific control systems for small molecule-mediated regulation of cell growth and noninvasive in vivo sensing of metabolite production

    Synthetic biology platforms for natural product biosynthesis and discovery

    Get PDF
    Plants are a rich source of unique scaffolds, including 25% of natural-product-derived drugs. However, the discovery, synthesis, and overall material supply chains for sourcing plant natural products and their derivatives remain ad hoc, biased, and tedious. While microbial biosynthesis presents compelling alternatives to traditional approaches based on extraction from natural plant hosts, many challenges exist in the reconstruction of plant specialized metabolic pathways in microbial hosts. My laboratory has developed approaches to address the challenges that arise in the reconstruction of complex biosynthesis schemes, including spatial engineering strategies to direct the activities and specificities of pathway enzymes and recoding strategies to address folding, processing, and stability issues that may arise with the expression of plant enzymes in heterologous microbial hosts. We have utilized these strategies to develop yeast-based production platforms for an important class of plant alkaloids, the benzylisoquinoline alkaloids, including the medicinal opioids. These synthetic biology platforms will lead to transformative advances in natural product discovery, drug development, and production

    The Regulatory Roles of the Galactose Permease and Kinase in the Induction Response of the GAL Network in Saccharomyces cerevisiae

    Get PDF
    The GAL genetic switch of Saccharomyces cerevisiae exhibits an ultrasensitive response to the inducer galactose as well as the "all-or-none" behavior characteristic of many eukaryotic regulatory networks. We have constructed a strain that allows intermediate levels of gene expression from a tunable GAL1 promoter at both the population and the single cell level by altering the regulation of the galactose permease Gal2p. Similar modifications to other feedback loops regulating the Gal80p repressor and the Gal3p signaling protein did not result in similarly tuned responses, indicating that the level of inducer transport is unique in its ability to control the switch response of the network. In addition, removal of the Gal1p galactokinase from the network resulted in a regimed response due to the dual role of this enzyme in galactose catabolism and transport. These two activities have competing effects on the response of the network to galactose such that the transport effects of Gal1p are dominant at low galactose concentrations, whereas its catabolic effects are dominant at high galactose concentrations. In addition, flow cytometry analysis revealed the unexpected phenomenon of multiple populations in the gal1{Delta} strains, which were not present in the isogenic GAL1 background. This result indicates that Gal1p may play a previously undescribed role in the stability of the GAL network response

    A synthetic library of RNA control modules for predictable tuning of gene expression in yeast

    Get PDF
    Advances in synthetic biology have resulted in the development of genetic tools that support the design of complex biological systems encoding desired functions. The majority of efforts have focused on the development of regulatory tools in bacteria, whereas fewer tools exist for the tuning of expression levels in eukaryotic organisms. Here, we describe a novel class of RNA-based control modules that provide predictable tuning of expression levels in the yeast Saccharomyces cerevisiae. A library of synthetic control modules that act through posttranscriptional RNase cleavage mechanisms was generated through an in vivo screen, in which structural engineering methods were applied to enhance the insulation and modularity of the resulting components. This new class of control elements can be combined with any promoter to support titration of regulatory strategies encoded in transcriptional regulators and thus more sophisticated control schemes. We applied these synthetic controllers to the systematic titration of flux through the ergosterol biosynthesis pathway, providing insight into endogenous control strategies and highlighting the utility of this control module library for manipulating and probing biological systems

    New bio-based supply chains for plant-based medicines

    Get PDF
    Plants are a rich source of unique molecules, including 25% of natural-product-derived drugs. However, the discovery, synthesis, and overall material supply chains for sourcing plant-based medicines remain ad hoc, biased, and tedious. While microbial biosynthesis presents compelling alternatives to traditional approaches based on extraction from natural plant hosts, many challenges exist in the reconstruction of plant specialized metabolic pathways in microbial hosts. We have developed approaches to address the challenges that arise in the reconstruction of complex plant biosynthetic pathways in microbial hosts. We have utilized these strategies to develop yeast production platforms for an important class of plant alkaloids, which include the medicinal opioids and noscapinoids. The intersection of synthetic biology, genomics, and informatics will lead to transformative advances in how we make and discover essential medicines

    Model-guided design of ligand-regulated RNAi for programmable control of gene expression

    Get PDF
    Progress in constructing biological networks will rely on the development of more advanced components that can be predictably modified to yield optimal system performance. We have engineered an RNA-based platform, which we call an shRNA switch, that provides for integrated ligand control of RNA interference (RNAi) by modular coupling of an aptamer, competing strand, and small hairpin (sh) RNA stem into a single component that links ligand concentration and target gene expression levels. A combined experimental and mathematical modelling approach identified multiple tuning strategies and moves towards a predictable framework for the forward design of shRNA switches. The utility of our platform is highlighted by the demonstration of fine-tuning, multi-input control, and model-guided design of shRNA switches with an optimized dynamic range. Thus, shRNA switches can serve as an advanced component for the construction of complex biological systems and offer a controlled means of activating RNAi in disease therapeutics

    Higher-Order Cellular Information Processing with Synthetic RNA Devices

    Get PDF
    The engineering of biological systems is anticipated to provide effective solutions to challenges that include energy and food production, environmental quality, and health and medicine. Our ability to transmit information to and from living systems, and to process and act on information inside cells, is critical to advancing the scale and complexity at which we can engineer, manipulate, and probe biological systems. We developed a general approach for assembling RNA devices that can execute higher-order cellular information processing operations from standard components. The engineered devices can function as logic gates (AND, NOR, NAND, or OR gates) and signal filters, and exhibit cooperativity. RNA devices process and transmit molecular inputs to targeted protein outputs, linking computation to gene expression and thus the potential to control cellular function
    corecore