5,307 research outputs found
The LAMOST Survey of Background Quasars in the Vicinity of the Andromeda and Triangulum Galaxies -- II. Results from the Commissioning Observations and the Pilot Surveys
We present new quasars discovered in the vicinity of the Andromeda and
Triangulum galaxies with the LAMOST during the 2010 and 2011 observational
seasons. Quasar candidates are selected based on the available SDSS, KPNO 4 m
telescope, XSTPS optical, and WISE near infrared photometric data. We present
509 new quasars discovered in a stripe of ~135 sq. deg from M31 to M33 along
the Giant Stellar Stream in the 2011 pilot survey datasets, and also 17 new
quasars discovered in an area of ~100 sq. deg that covers the central region
and the southeastern halo of M31 in the 2010 commissioning datasets. These 526
new quasars have i magnitudes ranging from 15.5 to 20.0, redshifts from 0.1 to
3.2. They represent a significant increase of the number of identified quasars
in the vicinity of M31 and M33. There are now 26, 62 and 139 known quasars in
this region of the sky with i magnitudes brighter than 17.0, 17.5 and 18.0
respectively, of which 5, 20 and 75 are newly-discovered. These bright quasars
provide an invaluable collection with which to probe the kinematics and
chemistry of the ISM/IGM in the Local Group of galaxies. A total of 93 quasars
are now known with locations within 2.5 deg of M31, of which 73 are newly
discovered. Tens of quasars are now known to be located behind the Giant
Stellar Stream, and hundreds behind the extended halo and its associated
substructures of M31. The much enlarged sample of known quasars in the vicinity
of M31 and M33 can potentially be utilized to construct a perfect astrometric
reference frame to measure the minute PMs of M31 and M33, along with the PMs of
substructures associated with the Local Group of galaxies. Those PMs are some
of the most fundamental properties of the Local Group.Comment: 26 pages, 6 figures, AJ accepte
Learning Transcriptional Regulatory Relationships Using Sparse Graphical Models
Understanding the organization and function of transcriptional regulatory networks by analyzing high-throughput gene expression profiles is a key problem in computational biology. The challenges in this work are 1) the lack of complete knowledge of the regulatory relationship between the regulators and the associated genes, 2) the potential for spurious associations due to confounding factors, and 3) the number of parameters to learn is usually larger than the number of available microarray experiments. We present a sparse (L1 regularized) graphical model to address these challenges. Our model incorporates known transcription factors and introduces hidden variables to represent possible unknown transcription and confounding factors. The expression level of a gene is modeled as a linear combination of the expression levels of known transcription factors and hidden factors. Using gene expression data covering 39,296 oligonucleotide probes from 1109 human liver samples, we demonstrate that our model better predicts out-of-sample data than a model with no hidden variables. We also show that some of the gene sets associated with hidden variables are strongly correlated with Gene Ontology categories. The software including source code is available at http://grnl1.codeplex.com
Constraints on the Ď_(c1) versus Ď_(c2) polarizations in proton-proton collisions at âs = 8 TeV
The polarizations of promptly produced Ď_(c1) and Ď_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at âs=8ââTeV. The Ď_c states are reconstructed via their radiative decays Ď_c â J/ĎÎł, with the photons being measured through conversions to eâşeâť, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the Ď_(c2) to Ď_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/Ď â ÎźâşÎźâť decay, in three bins of J/Ď transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
X-ray emission from the Sombrero galaxy: discrete sources
We present a study of discrete X-ray sources in and around the
bulge-dominated, massive Sa galaxy, Sombrero (M104), based on new and archival
Chandra observations with a total exposure of ~200 ks. With a detection limit
of L_X = 1E37 erg/s and a field of view covering a galactocentric radius of ~30
kpc (11.5 arcminute), 383 sources are detected. Cross-correlation with Spitler
et al.'s catalogue of Sombrero globular clusters (GCs) identified from HST/ACS
observations reveals 41 X-rays sources in GCs, presumably low-mass X-ray
binaries (LMXBs). We quantify the differential luminosity functions (LFs) for
both the detected GC and field LMXBs, whose power-low indices (~1.1 for the
GC-LF and ~1.6 for field-LF) are consistent with previous studies for
elliptical galaxies. With precise sky positions of the GCs without a detected
X-ray source, we further quantify, through a fluctuation analysis, the GC LF at
fainter luminosities down to 1E35 erg/s. The derived index rules out a
faint-end slope flatter than 1.1 at a 2 sigma significance, contrary to recent
findings in several elliptical galaxies and the bulge of M31. On the other
hand, the 2-6 keV unresolved emission places a tight constraint on the field
LF, implying a flattened index of ~1.0 below 1E37 erg/s. We also detect 101
sources in the halo of Sombrero. The presence of these sources cannot be
interpreted as galactic LMXBs whose spatial distribution empirically follows
the starlight. Their number is also higher than the expected number of cosmic
AGNs (52+/-11 [1 sigma]) whose surface density is constrained by deep X-ray
surveys. We suggest that either the cosmic X-ray background is unusually high
in the direction of Sombrero, or a distinct population of X-ray sources is
present in the halo of Sombrero.Comment: 11 figures, 5 tables, ApJ in pres
- âŚ