16 research outputs found

    Microstructured optical waveguide-based endoscopic probe coated with silica submicron particles

    Get PDF
    Microstructured optical waveguides (MOW) are of great interest for chemical and biological sensing. Due to the high overlap between a guiding light mode and an analyte filling of one or several fiber capillaries, such systems are able to provide strong sensitivity with respect to variations in the refractive index and the thickness of filling materials. Here, we introduce a novel type of functionalized MOWs whose capillaries are coated by a layer-by-layer (LBL) approach, enabling the alternate deposition of silica particles (SiO2) at different diameters—300 nm, 420 nm, and 900 nm—and layers of poly(diallyldimethylammonium chloride) (PDDA). We demonstrate up to three covering bilayers consisting of 300-nm silica particles. Modifications in the MOW transmission spectrum induced by coating are measured and analyzed. The proposed technique of MOW functionalization allows one to reach novel sensing capabilities, including an increase in the effective sensing area and the provision of a convenient scaffold for the attachment of long molecules such as protein

    Mars’ plasma system. Scientific potential of coordinated multipoint missions: “The next generation”

    Get PDF
    The objective of this White Paper, submitted to ESA’s Voyage 2050 call, is to get a more holistic knowledge of the dynamics of the Martian plasma system, from its surface up to the undisturbed solar wind outside of the induced magnetosphere. This can only be achieved with coordinated multi-point observations with high temporal resolution as they have the scientific potential to track the whole dynamics of the system (from small to large scales), and they constitute the next generation of the exploration of Mars analogous to what happened at Earth a few decades ago. This White Paper discusses the key science questions that are still open at Mars and how they could be addressed with coordinated multipoint missions. The main science questions are: (i) How does solar wind driving impact the dynamics of the magnetosphere and ionosphere? (ii) What is the structure and nature of the tail of Mars’ magnetosphere at all scales? (iii) How does the lower atmosphere couple to the upper atmosphere? (iv) Why should we have a permanent in-situ Space Weather monitor at Mars? Each science question is devoted to a specific plasma region, and includes several specific scientific objectives to study in the coming decades. In addition, two mission concepts are also proposed based on coordinated multi-point science from a constellation of orbiting and ground-based platforms, which focus on understanding and solving the current science gaps

    Spectral Resolution of the Primary Electron Acceptor A0 in Photosystem I

    No full text
    The reduced state of the primary electron acceptor of Photosystem I, A0, was resolved spectroscopically in its lowest energy Qy region for the first time without the addition of chemical reducing agents and without extensive data manipulation. To carry this out, we used the menB mutant of Synechocystis sp. PCC 6803 in which phylloquinone is replaced by plastoquinone-9 in the A1 sites of Photosystem I. The presence of plastoquinone-9 slows electron transfer from A0 to A1, leading to a long-lived A0– state. This allows its spectral signature to be readily detected in a time-resolved optical pump–probe experiment. The maximum bleaching (A0– – A0) was found to occur at 684 nm with a corresponding extinction coefficient of 43 mM–1 cm–1. The data show evidence for an electrochromic shift of an accessory chlorophyll pigment, suggesting that the latter Qy absorption band is centered around 682 nm

    Mars' plasma system. Scientific potential of coordinated multipoint missions: The next generation

    No full text
    The objective of this White Paper, submitted to ESA's Voyage 2050 call, is to get a more holistic knowledge of the dynamics of the Martian plasma system, from its surface up to the undisturbed solar wind outside of the induced magnetosphere. This can only be achieved with coordinated multi-point observations with high temporal resolution as they have the scientific potential to track the whole dynamics of the system (from small to large scales), and they constitute the next generation of the exploration of Mars analogous to what happened at Earth a few decades ago. This White Paper discusses the key science questions that are still open at Mars and how they could be addressed with coordinated multipoint missions. The main science questions are: (i) How does solar wind driving impact the dynamics of the magnetosphere and ionosphere? (ii) What is the structure and nature of the tail of Mars' magnetosphere at all scales? (iii) How does the lower atmosphere couple to the upper atmosphere? (iv) Why should we have a permanent in-situ Space Weather monitor at Mars? Each science question is devoted to a specific plasma region, and includes several specific scientific objectives to study in the coming decades. In addition, two mission concepts are also proposed based on coordinated multi-point science from a constellation of orbiting and ground-based platforms, which focus on understanding and solving the current science gaps
    corecore