473 research outputs found

    Field-cycle-resolved photoionization in solids

    Get PDF
    The Keldysh theory of photoionization in a solid dielectric is generalized to the case of arbitrarily short driving pulses of arbitrary pulse shape. We derive a closed-form solution for the nonadiabatic ionization rate in a transparent solid with a periodic dispersion relation, which reveals ultrafast ionization dynamics within the field cycle and recovers the key results of the Keldysh theory in the appropriate limiting regimes.Comment: 4 pages, 2 figure

    Main Elements of Logistics

    Get PDF
    Virtually lossless self-compression of 10-mJ 3.9-um sub-100 fs pulses in bulk YAG resulting in 9-mJ 33-fs pulses is reported. Generated peak power exceeds 250 GW which is suitable for filamentation in ambient air

    CEP-stable Tunable THz-Emission Originating from Laser-Waveform-Controlled Sub-Cycle Plasma-Electron Bursts

    Full text link
    We study THz-emission from a plasma driven by an incommensurate-frequency two-colour laser field. A semi-classical transient electron current model is derived from a fully quantum-mechanical description of the emission process in terms of sub-cycle field-ionization followed by continuum-continuum electron transitions. For the experiment, a CEP-locked laser and a near-degenerate optical parametric amplifier are used to produce two-colour pulses that consist of the fundamental and its near-half frequency. By choosing two incommensurate frequencies, the frequency of the CEP-stable THz-emission can be continuously tuned into the mid-IR range. This measured frequency dependence of the THz-emission is found to be consistent with the semi-classical transient electron current model, similar to the Brunel mechanism of harmonic generation

    Power-scalable subcycle pulses from laser filaments

    Get PDF
    Compression of optical pulses to ultrashort pulse widths using methods of nonlinear optics is a well-established technology of modern laser science. Extending these methods to pulses with high peak powers, which become available due to the rapid progress of laser technologies, is, however, limited by the universal physical principles. With the ratio P/P(cr) of the peak power of an ultrashort laser pulse, P, to the critical power of self-focusing, P(cr), playing the role of the fundamental number-of-particles integral of motion of the nonlinear Schrödinger equation, keeping this ratio constant is a key principle for the power scaling of laser-induced filamentation. Here, we show, however, that, despite all the complexity of the underlying nonlinear physics, filamentation-assisted self-compression of ultrashort laser pulses in the regime of anomalous dispersion can be scaled within a broad range of peak powers against the principle of constant P/P(cr). We identify filamentation self-compression scaling strategies whereby subcycle field waveforms with almost constant pulse widths can be generated without a dramatic degradation of beam quality within a broad range of peak powers, varying from just a few to hundreds of P(cr)

    Attosecond Shock Waves

    Get PDF

    Probing Ultra-Fast Dephasing via Entangled Photon Pairs

    Full text link
    We demonstrate how the Hong-Ou-Mandel (HOM) interference with polarization-entangled photons can be used to probe ultrafast dephasing. We can infer the optical properties like the real and imaginary parts of the complex susceptibility of the medium from changes in the position and the shape of the HOM dip. From the shift of the HOM dip, we are able to measure 22 fs dephasing time using a continuous-wave (CW) laser even with optical loss > 97%, while the HOM dip visibility is maintained at 92.3~\% (which can be as high as 96.7%). The experimental observations, which are explained in terms of a rigorous theoretical model, demonstrate the utility of HOM interference in probing ultrafast dephasing.Comment: 12 pages, 7 figure

    Ultralow-power local laser control of the dimer density in alkali-metal vapors through photodesorption

    Full text link
    Ultralow-power diode-laser radiation is employed to induce photodesorption of cesium from a partially transparent thin-film cesium adsorbate on a solid surface. Using resonant Raman spectroscopy, we demonstrate that this photodesorption process enables an accurate local optical control of the density of dimer molecules in alkali-metal vapors.Comment: 4 pages, 4 figure
    corecore