1,186 research outputs found
Untangling cosmic magnetic fields: Faraday tomography at metre wavelengths with LOFAR
14 pages, 6 figures. Accepted for publication in "The Power of Faraday Tomography" special issue of GalaxiesThe technique of Faraday tomography is a key tool for the study ofmagnetised plasmas in the new era of broadband radio-polarisation observations. In particular, observations at metre wavelengths provide significantly better Faraday depth accuracies compared to traditional centimetre-wavelength observations. However, the effect of Faraday depolarisationmakes the polarised signal very challenging to detect at metre wavelengths (MHz frequencies). In this work, Faraday tomography is used to characterise the Faraday rotation properties of polarised sources found in data from the LOFAR Two-Metre Sky Survey (LoTSS). Of the 76 extragalactic polarised sources analysed here, we find that all host a radio-loud AGN (Active Galactic Nucleus). The majority of the sources (~64%) are large FRII radio galaxies with a median projected linear size of 710 kpc and median radio luminosity at 144 MHz of 4 Ă 10 26 W Hz -1 (with ~13% of all sources having a linear size > 1 Mpc). In several cases, both hotspots are detected in polarisation at an angular resolution of ~20'. One such case allowed a study of intergalactic magnetic fields on scales of 3.4 Mpc. Other detected source types include an FRI radio galaxy and at least eight blazars. Most sources display simple Faraday spectra, but we highlight one blazar that displays a complex Faraday spectrum, with two close peaks in the Faraday dispersion function.Peer reviewe
The two-component giant radio halo in the galaxy cluster Abell 2142
We report on a spectral study at radio frequencies of the giant radio halo in
A2142 (z=0.0909), which we performed to explore its nature and origin. A2142 is
not a major merger and the presence of a giant radio halo is somewhat
surprising. We performed deep radio observations with the GMRT at 608 MHz, 322
MHz, and 234 MHz and with the VLA in the 1-2 GHz band. We obtained high-quality
images at all frequencies in a wide range of resolutions. The radio halo is
well detected at all frequencies and extends out to the most distant cold front
in A2142. We studied the spectral index in two regions: the central part of the
halo and a second region in the direction of the most distant south-eastern
cold front, selected to follow the bright part of the halo and X-ray emission.
We complemented our observations with a preliminary LOFAR image at 118 MHz and
with the re-analysis of archival VLA data at 1.4 GHz. The two components of the
radio halo show different observational properties. The central brightest part
has higher surface brightess and a spectrum whose steepness is similar to those
of the known radio halos, i.e. . The ridge, which fades into the larger scale emission, is broader in
size and has considerably lower surface brightess and a moderately steeper
spectrum, i.e. . We propose that
the brightest part of the radio halo is powered by the central sloshing in
A2142, similar to what has been suggested for mini-halos, or by secondary
electrons generated by hadronic collisions in the ICM. On the other hand, the
steeper ridge may probe particle re-acceleration by turbulence generated either
by stirring the gas and magnetic fields on a larger scale or by less energetic
mechanisms, such as continuous infall of galaxy groups or an off-axis merger.Comment: 18 pages, 10 figures, 4 tables - A&A, accepte
A blind detection of a large, complex, SunyaevâZelâdovich structure
We present an interesting SunyaevâZelâdovich (SZ) detection in the first of the Arcminute Microkelvin Imager (AMI) âblindâ, degree-square fields to have been observed down to our target sensitivity of 100”Jy beam^(-1). In follow-up deep pointed observations the SZ effect is detected with a maximum peak decrement greater than eight times the thermal noise. No corresponding emission is visible in the ROSAT all-sky X-ray survey and no cluster is evident in the Palomar all-sky optical survey. Compared with existing SZ images of distant clusters, the extent is large (â10 arcmin) and complex; our analysis favours a model containing two clusters rather than a single cluster. Our Bayesian analysis is currently limited to modelling each cluster with an ellipsoidal or spherical ÎČ model, which does not do justice to this decrement. Fitting an ellipsoid to the deeper candidate we find the following. (a) Assuming that the Evrard et al. approximation to Press & Schechter correctly gives the number density of clusters as a function of mass and redshift, then, in the search area, the formal Bayesian probability ratio of the AMI detection of this cluster is 7.9 Ă 10^4:1; alternatively assuming Jenkins et al. as the true prior, the formal Bayesian probability ratio of detection is 2.1 Ă 10^5:1. (b) The cluster mass is M_(T,200) = 5.5_(-1.3)^(+1.2) x 10^(14)h^(-1)_(70) M_â. (c) Abandoning a physical model with number density prior and instead simply modelling the SZ decrement using a phenomenological ÎČ model of temperature decrement as a function of angular distance, we find a central SZ temperature decrement of -295_(-15)^(+36) ”K â this allows for cosmic microwave background primary anisotropies, receiver noise and radio sources. We are unsure if the cluster system we observe is a merging system or two separate clusters
The Validity of the Modified Star Excursion Balance Test as a Predictor of Knee Extensor and Hip Abductor Strength
Objectives: To test the construct validity of the modified Star Excursion Balance Test (SEBT) in predicting the strength of knee extensors and hip abductors and to compare performance between dominant and non-dominant legs. Strength, as measured using hand held dynamometry, has been used as one of a variety of measures in order to subgroup patients with patellofemoral pain. This method is not well received in clinical practice due to time constraints and cost. In contrast, the SEBT is a quick and simple functional measure of dynamic stability. This study examined the validity of the SEBT as an alternate strength measure. Design: Within subject correlation. Each participant recorded maximum isometric contractions for hip abduction and knee extension using a HHD and performed the modified SEBT, on both legs, within one test period. Paired t tests were used to compare dominant and non-dominant legs and Pearsonâs correlation analyses were used to explore for associations. Setting: Non-clinical environment, Participants: Eighteen healthy male amateur runnerâs between 18 and 39 years old (mean age 36.1 years). Main outcome measures: Knee and hip moments normalised for leg length (Nm/m) for the HHD and percent of leg length reach score for each SEBT reach as well as a composite of all three. Results: There was no significant difference between dominant and non-dominant legs for all the tests (knee extension p = 0.72, hip abduction p = 0.90, SEBT composite p = 0.86) therefore data was combined into one set. There was no significant relationship between either hip abduction strength (r = 0.28, p = 0.11), or knee extension strength (r= 0.16, p = 0.17), with any combination of the SEBT. A moderate relationship (r = 0.52, p = 0.38) between hip abduction and SEBT posterolateral reach was seen, however, this was not statistically significant. Conclusion: There was no statistically significant association between either knee extension or hip abduction strength with the modified SEBT. This suggests that strength is unlikely to be a primary construct of the test and the SEBT is not a useful replacement for the HHD when testing strength
Automated parametric neutronics analysis of the Helium Cooled Pebble Bed breeder blanket with BeââTi
The Helium Cooled Pebble Bed (HCPB) breeder blanket is being developed as part of the European Fusion Programme. Part of the programme is to investigate blanket designs relevant for future demonstration fusion power plants. This paper presents neutronics analyses of the HCPB with an alternative neutron multiplier, Be12Ti which is incorporated into the design, replacing the current Be multiplier. A parameter study was performed for a range of geometries to identify the optimal heights of the lithium ceramic and neutron multiplier pebble beds. Automated creation of CAD models followed by conversion to constructive solid geometry (CSG) and unstructured mesh (UM) geometry allows the models to be useful for both neutronics simulations and engineering simulations. In this neutronics study simulations were performed using MCNP 6.1 to find the tritium breeding ratio, energy multiplication and the volumetric heat loads of different blanket designs. Combinations of geometry parameters and material choices that resulted in adequate TBR values were identified and will be further investigated with automated engineering simulations. This paper provides insight, supported by neutronics analysis, on the validity of the design and comments on some of the potential advantages and disadvantages of using Be12Ti in the Helium Cooled Pebble Bed (HCPB) breeder blanket. Blankets with Be12Ti neutron multiplier were found to produce less tritium but higher energy multiplication when compared to blankets with Be neutron multiplier
LOFAR early-time search for coherent radio emission from GRB 180706A
© 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society.The nature of the central engines of gamma-ray bursts (GRBs) and the composition of their relativistic jets are still under debate. If the jets are Poynting flux dominated rather than baryon dominated, a coherent radio flare from magnetic re-connection events might be expected with the prompt gamma-ray emission. There are two competing models for the central engines of GRBs; a black hole or a newly formed milli-second magnetar. If the central engine is a magnetar it is predicted to produce coherent radio emission as persistent or flaring activity. In this paper, we present the deepest limits to date for this emission following LOFAR rapid response observations of GRB 180706A. No emission is detected to a 3 limit of 1.7 mJy beam at 144 MHz in a two-hour LOFAR observation starting 4.5 minutes after the gamma-ray trigger. A forced source extraction at the position of GRB 180706A provides a marginally positive (1 sigma) peak flux density of mJy. The data were time-sliced into different sets of snapshot durations to search for FRB like emission. No short duration emission was detected at the location of the GRB. We compare these results to theoretical models and discuss the implications of a non-detection.Peer reviewedFinal Accepted Versio
Discovery of inverse-Compton X-ray emission and estimate of the volume-averaged magnetic field in a galaxy group
Observed in a significant fraction of clusters and groups of galaxies,
diffuse radio synchrotron emission reveals the presence of relativistic
electrons and magnetic fields permeating large-scale systems of galaxies.
Although these non-thermal electrons are expected to upscatter cosmic microwave
background photons up to hard X-ray energies, such inverse-Compton (IC) X-ray
emission has so far not been unambiguously detected on cluster/group scales.
Using deep, new proprietary XMM-Newton observations (200 ks of clean
exposure), we report a 4.6 detection of extended IC X-ray emission in
MRC 0116+111, an extraordinary group of galaxies at . Assuming a
spectral slope derived from low-frequency radio data, the detection remains
robust to systematic uncertainties. Together with low-frequency radio data from
GMRT, this detection provides an estimate for the volume-averaged magnetic
field of G within the central part of the group. This
value can serve as an anchor for studies of magnetic fields in the largest
gravitationally bound systems in the Universe.Comment: 11 pages, 7 figures, accepted for publication in MNRA
Search and modelling of remnant radio galaxies in the LOFAR Lockman Hole field
Accepted for publication in Astronomy & Astrophysics. Reproduced with permission from Astronomy & Astrophysics, © 2017 ESO.The phase of radio galaxy evolution after the jets have switched off, often referred to as the remnant phase, is poorly understood and very few sources in this phase are known. In this work we present an extensive search for remnant radio galaxies in the Lockman Hole, a well-studied extragalactic field. We create mock catalogues of low-power radio galaxies based on Monte Carlo simulations to derive first-order predictions of the fraction of remnants in radio flux limited samples for comparison with our Lockman-Hole sample. We have combined LOFAR observations at 150 MHz with public surveys at higher frequencies to perform a complete selection and have used, for the first time, a combination of spectral criteria (e.g. the classical ultra-steep spectral index and high spectral curvature) as well as morphological criteria (e.g. low radio core prominence and relaxed shapes). Mock catalogues of radio galaxies are created based on existing spectral and dynamical evolution models combined with observed source properties. We have identified 23 candidate remnant radio galaxies which cover a variety of morphologies and spectral characteristics. We suggest that these different properties are related to different stages of the remnant evolution. We find that ultra-steep spectrum remnants represent only a fraction of our remnant sample suggesting a very rapid luminosity evolution of the radio plasma. Results from mock catalogues demonstrate the importance of dynamical evolution in the remnant phase of low-power radio galaxies to obtain fractions of remnant sources consistent with our observations. Moreover, these results confirm that ultra-steep spectrum remnants represent only a subset of the entire population (50%) when frequencies higher than 1400 MHz are not included in the selection process, and that they are biased towards old ages.Peer reviewe
Remnant radio-loud AGN in the Herschel-ATLAS field
Only a small fraction of observed active galactic nuclei (AGN) display large-scale radio emission associated with jets, yet these radio-loud AGN have become increasingly important in models of galaxy evolution. In determining the dynamics and energetics of the radio sources over cosmic time, a key question concerns what happens when their jets switch off. The resulting âremnant' radio-loud AGN have been surprisingly evasive in past radio surveys, and therefore statistical information on the population of radio-loud AGN in their dying phase is limited. In this paper, with the recent developments of Low-Frequency Array (LOFAR) and the Very Large Array, we are able to provide a systematically selected sample of remnant radio-loud AGN in the Herschel-ATLAS field. Using a simple core-detection method, we constrain the upper limit on the fraction of remnants in our radio-loud AGN sample to 9âperâcent, implying that the extended lobe emission fades rapidly once the core/jets turn off. We also find that our remnant sample has a wide range of spectral indices (â1.5 â©œ α1400150 â©œ â0.5), confirming that the lobes of some remnants may possess flat spectra at low frequencies just as active sources do. We suggest that, even with the unprecedented sensitivity of LOFAR, our sample may still only contain the youngest of the remnant population
- âŠ