7 research outputs found

    Cloud-based solutions for distributed climate modeling

    Get PDF
    ECCO in the cloud - overviewA new, cloud-based framework for climate modeling is introduced allowing to run climate models at the “click of a button”. The framework aims to simplify dissemination of climate models, increase transparency of modeling activities, expand their user base, and facilitate broader research collaboration.NASA Physical Oceanograph

    Ship-based contributions to global ocean, weather, and climate observing systems

    Get PDF
    The role ships play in atmospheric, oceanic, and biogeochemical observations is described with a focus on measurements made within 100 m of the ocean surface. Ships include merchant and research vessels, cruise liners and ferries, fishing vessels, coast guard, military, and other government-operated ships, yachts, and a growing fleet of automated surface vessels. The present capabilities of ships to measure essential climate/ocean variables and the requirements from a broad community to address operational, commercial, and scientific needs are described. Following the guidance from the OceanObs'19 organizing committee, the authors provide a vision to expand observations needed from ships to understand and forecast the exchanges across the ocean-atmosphere interface. The vision addresses (1) recruiting vessels to improve both spatial and temporal sampling, (2) conducting multi-variate sampling on ships, (3) raising technology readiness levels of automated shipboard sensors and ship-to-shore data communications, (4) advancing quality evaluation of observations, and (5) developing a unified data management approach for observations and metadata that meets the needs of a diverse user community. Recommendations are made focusing on integrating private and autonomous vessels into the observing system, investing in sensor and communications technology development, developing an integrated data management structure that includes all types of ships, and moving towards a quality evaluation process that will result in a subset of ships being defined as mobile reference ships that will support climate studies. We envision a future where commercial, research, and privately-owned vessels are making multivariate observations using a combination of automated and human-observed measurements. All data and metadata will be documented, tracked, evaluated, distributed, and archived to benefit users of marine data. This vision looks at ships as a holistic network, not a set of disparate commercial, research, and/or third-party activities working in isolation, to bring these communities together for the mutual benefit of all

    Altimetry for the future: Building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ‘‘Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Altimetry for the future: building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the “Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    The Surface Water and Ocean Topography Mission: A Breakthrough in Radar Remote Sensing of the Ocean and Land Surface Water

    No full text
    Abstract The elevations of water surfaces hold important information on the earth's oceans and land surface waters. Ocean sea surface height is related to the internal change of the ocean's density and mass associated with ocean circulation and its response to climate change. The flow rates of rivers and volume changes of lakes are crucial to freshwater supplies and the hazards of floods and drought resulting from extreme weather and climate events. The Surface Water and Ocean Topography (SWOT) Mission is a new satellite using advanced radar technology to make headway in observing the variability of the elevation of water surfaces globally, providing fundamentally new information previously not available to the study of earth's waters. Here, we provide the first results of SWOT over oceans, rivers, and lakes. We demonstrate the potential of the mission to address science questions in oceanography and hydrology

    The Salinity Pilot-Mission Exploitation Platform (Pi-MEP): A Hub for Validation and Exploitation of Satellite Sea Surface Salinity Data

    No full text
    The Pilot-Mission Exploitation Platform (Pi-MEP) for salinity is an ESA initiative originally meant to support and widen the uptake of Soil Moisture and Ocean Salinity (SMOS) mission data over the ocean. Starting in 2017, the project aims at setting up a computational web-based platform focusing on satellite sea surface salinity data, supporting studies on enhanced validation and scientific process over the ocean. It has been designed in close collaboration with a dedicated science advisory group in order to achieve three main objectives: gathering all the data required to exploit satellite sea surface salinity data, systematically producing a wide range of metrics for comparing and monitoring sea surface salinity products’ quality, and providing user-friendly tools to explore, visualize and exploit both the collected products and the results of the automated analyses. The Salinity Pi-MEP is becoming a reference hub for the validation of satellite sea surface salinity missions by providing valuable information on satellite products (SMOS, Aquarius, SMAP), an extensive in situ database (e.g., Argo, thermosalinographs, moorings, drifters) and additional thematic datasets (precipitation, evaporation, currents, sea level anomalies, sea surface temperature, etc.). Co-localized databases between satellite products and in situ datasets are systematically generated together with validation analysis reports for 30 predefined regions. The data and reports are made fully accessible through the web interface of the platform. The datasets, validation metrics and tools (automatic, user-driven) of the platform are described in detail in this paper. Several dedicated scienctific case studies involving satellite SSS data are also systematically monitored by the platform, including major river plumes, mesoscale signatures in boundary currents, high latitudes, semi-enclosed seas, and the high-precipitation region of the eastern tropical Pacific. Since 2019, a partnership in the Salinity Pi-MEP project has been agreed between ESA and NASA to enlarge focus to encompass the entire set of satellite salinity sensors. The two agencies are now working together to widen the platform features on several technical aspects, such as triple-collocation software implementation, additional match-up collocation criteria and sustained exploitation of data from the SPURS campaigns

    Building User‐Readiness for Satellite Earth Observing Missions: The Case of the Surface Water and Ocean Topography (SWOT) Mission

    No full text
    Abstract The goal in this commentary is to share the development of the NASA Applied Science pre‐launch protocol called the Early Adopter Program (EAP) that is designed to build user‐readiness of planned satellite Earth observing missions proactively and before the launch. Here we focus in particular on the Surface Water and Ocean Topography satellite mission EAP as an illustration of benefits of such a program of proactive and sustained user community engagement. Such a commentary will be of value to other satellite Earth observation missions that are currently in service, scheduled for launch or prioritized for development in the near future
    corecore