216 research outputs found

    A Stochastic Multi-scale Approach for Numerical Modeling of Complex Materials - Application to Uniaxial Cyclic Response of Concrete

    Full text link
    In complex materials, numerous intertwined phenomena underlie the overall response at macroscale. These phenomena can pertain to different engineering fields (mechanical , chemical, electrical), occur at different scales, can appear as uncertain, and are nonlinear. Interacting with complex materials thus calls for developing nonlinear computational approaches where multi-scale techniques that grasp key phenomena at the relevant scale need to be mingled with stochastic methods accounting for uncertainties. In this chapter, we develop such a computational approach for modeling the mechanical response of a representative volume of concrete in uniaxial cyclic loading. A mesoscale is defined such that it represents an equivalent heterogeneous medium: nonlinear local response is modeled in the framework of Thermodynamics with Internal Variables; spatial variability of the local response is represented by correlated random vector fields generated with the Spectral Representation Method. Macroscale response is recovered through standard ho-mogenization procedure from Micromechanics and shows salient features of the uniaxial cyclic response of concrete that are not explicitly modeled at mesoscale.Comment: Computational Methods for Solids and Fluids, 41, Springer International Publishing, pp.123-160, 2016, Computational Methods in Applied Sciences, 978-3-319-27994-

    Changes in capital allocation practices – ERM and organisational change

    Get PDF
    This paper aims to study changes in capital allocation routines following the introduction of a new risk management system, enterprise risk management (ERM). Based on an institutional framework and empirical evidence from multiple sources in a large UK insurance company, we evaluated the extent and nature of organisational change. ERM was seen as an external driver to the change in the existing routines, which in turn led to internal changes in new capital allocation routines. The change was extreme, which signifies that existing capital allocation routines were not strong enough to deal with ERM as a key driver of change

    Tidal resource extraction in the Pentland Firth, UK : Potential impacts on flow regime and sediment transport in the Inner Sound of Stroma

    Get PDF
    Large-scale extraction of power from tidal streams within the Pentland Firth is expected to be underway in the near future. The Inner Sound of Stroma in particular has attracted significant commercial interest. To understand potential environmental impacts of the installation of a tidal turbine array a case study based upon the Inner Sound is considered. A numerical computational fluid dynamics model, Fluidity, is used to conduct a series of depth-averaged simulations to investigate velocity and bed shear stress changes due to the presence of idealised tidal turbine arrays. The number of turbines is increased from zero to 400. It is found that arrays in excess of 85 turbines have the potential to affect bed shear stress distributions in such a way that the most favourable sites for sediment accumulation migrate from the edges of the Inner Sound towards its centre. Deposits of fine gravel and coarse sand are indicated to occur within arrays of greater than 240 turbines with removal of existing deposits in the shallower channel margins also possible. The effects of the turbine array may be seen several kilometres from the site which has implications not only on sediment accumulation, but also on the benthic fauna

    Search for the Rare Decay KL --> pi0 ee

    Full text link
    The KTeV/E799 experiment at Fermilab has searched for the rare kaon decay KL--> pi0ee. This mode is expected to have a significant CP violating component. The measurement of its branching ratio could support the Standard Model or could indicate the existence of new physics. This letter reports new results from the 1999-2000 data set. One event is observed with an expected background at 0.99 +/- 0.35 events. We set a limit on the branching ratio of 3.5 x 10^(-10) at the 90% confidence level. Combining the results with the dataset taken in 1997 yields the final KTeV result: BR(KL --> pi0 ee) < 2.8 x 10^(-10) at 90% CL.Comment: 4 pages, three figure

    Quasars and their host galaxies

    Full text link
    This review attempts to describe developments in the fields of quasar and quasar host galaxies in the past five. In this time period, the Sloan and 2dF quasar surveys have added several tens of thousands of quasars, with Sloan quasars being found to z>6. Obscured, or partially obscured quasars have begun to be found in significant numbers. Black hole mass estimates for quasars, and our confidence in them, have improved significantly, allowing a start on relating quasar properties such as radio jet power to fundamental parameters of the quasar such as black hole mass and accretion rate. Quasar host galaxy studies have allowed us to find and characterize the host galaxies of quasars to z>2. Despite these developments, many questions remain unresolved, in particular the origin of the close relationship between black hole mass and galaxy bulge mass/velocity dispersion seen in local galaxies.Comment: Review article, to appear in Astrophysics Update

    The trade-off between tidal-turbine array yield and environmental impact: a habitat suitability modelling approach

    Get PDF
    In the drive towards a carbon-free society, tidal energy has the potential to become a valuable part of the UK energy supply. Developments are subject to intense scrutiny, and potential environmental impacts must be assessed. Unfortunately many of these impacts are still poorly understood, including the implications that come with altering the hydrodynamics. Here, methods are proposed to quantify ecological impact and to incorporate its minimisation into the array design process. Four tidal developments in the Pentland Firth are modelled with the array optimisation tool OpenTidalFarm, that designs arrays to generate the maximum possible profit. Maximum entropy modelling is used to create habitat suitability maps for species that respond to changes in bedshear stress. Changes in habitat suitability caused by an altered tidal regime are assessed. OpenTidalFarm is adapted to simultaneously optimise array design to maximise both this habitat suitability and to maximise the profit of the array. The problem is thus posed as a multi-objective optimisation problem, and a set of Pareto solutions found, allowing trade-offs between these two objectives to be identified. The methods proposed generate array designs that have reduced negative impact, or even positive impact, on the habitat suitability of specific species or habitats of interest

    Fe2O3 supported on hollow micro/mesospheres silica for the catalytic partial oxidation of H2S to sulfur

    Full text link
    [EN] A family of Fe-based catalysts supported hollow silica mesospheres has been synthesized and tested in the catalytic partial oxidation of H2S to elemental sulfur at 170.180 degrees C, atmospheric pressure and under 300 min of time-on-stream. The characterization of the synthesized catalysts by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance UV-vis spectra (DRS), H-2-termoprogrammed reduction (H-2-TPR), N-2 adsorption-desorption at -196 degrees C and X-ray photoelectron spectroscopy (XPS) reveals the formation of a catalytic system with high micro- and mesoporosity with high dispersion of the Fe2O3 species. The catalytic results reported high activity in the selective oxidation of H2S, reaching a highest conversion value close to 94% with a selectivity towards elemental sulfur of 98% after 300 min of time on stream (TOS) at 180 degrees C for the HMS-10Fe catalyst. The comparison of Fe-containing HMS (10 wt% of iron loading) with other SiO2-based supports, as a fumed silica (Cab-osil) or a mesoporous silica (SBA-15), presents different H2S conversion values, following the next trend: HMS-10Fe > SBA-10Fe > Cab-10Fe. These results suggest that the use of a support with a narrow pore tend to facilitate the iron dispersion favoring higher conversion rates.The authors wish to acknowledge the financial support provided by the Ministry of Economy and Competitiveness (Spain) (MINECO) CTQ2015-68951-C1-3R y CTQ2015-68951-C3-3R, Junta de Andalucia (Spain) P12-RNM 1565 and FEDER funds. In addition, the authors also thank Fundacao Cearense de Apoio ao Desenvolvimento Cientifico e Tecnologico (FUNCAP) by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) - Processo: PDSE 99999.002602/2014-08.Cecilia, J.; Soriano Rodríguez, MD.; Marques Correia, L.; Rodríguez-Castellón, E.; López Nieto, JM.; Silveira Vieira, R. (2020). Fe2O3 supported on hollow micro/mesospheres silica for the catalytic partial oxidation of H2S to sulfur. Microporous and Mesoporous Materials. 294:1-10. https://doi.org/10.1016/j.micromeso.2019.109875S11029
    • …
    corecore