406 research outputs found

    Exploring differences in response to treatment with peginterferon alpha 2a (40kD) and ribavirin in chronic hepatitis C between genotypes 2 and 3

    Get PDF
    Chronic hepatitis C virus (HCV) infections with genotype 2 or 3 are associated with favourable sustained virologic response (SVR) rates. However, genotype 3 may respond less well. We reassessed all treatment-naive patients with genotype 2 and 3 participating in a large expanded-access, non-randomized, open-label trial, evaluating 180ÎŒg pegylated interferon (peg-IFN) alpha-2a (40kD) once weekly and 800 mg/day ribavirin for 24–48 weeks. Factors measured prior to initiation of antiviral therapy were considered in the multiple logistic regression model for predicting SVR. In total, 180 patients were analysed of which 72 (40%) were infected by genotype 2 and 108 (60%) genotype 3. The baseline characteristics between patients infected by genotype 2 or 3 were no different including the distribution of hepatic fibrosis stages by METAVIR score. Overall SVR was lower in those patients infected with genotype 3. The significant multivariate predictors of lack of SVR were hepatic fibrosis (P = 0.014) and genotype 3 (P = 0.030). The negative impact of cirrhosis (METAVIR score F4) on treatment response was more evident among subjects with genotype 3 than those with genotype 2 (P = 0.027). There is significant interaction between cirrhosis and genotype 3 leading to a poor antiviral response in such patients requiring an alternate management strategy. This finding should be confirmed in a larger population

    Rescue of mutant rhodopsin traffic by metformin-induced AMPK activation accelerates photoreceptor degeneration

    Get PDF
    Protein misfolding caused by inherited mutations leads to loss of protein function and potentially toxic 'gain of function', such as the dominant P23H rhodopsin mutation that causes retinitis pigmentosa (RP). Here, we tested whether the AMPK activator metformin could affect the P23H rhodopsin synthesis and folding. In cell models, metformin treatment improved P23H rhodopsin folding and traffic. In animal models of P23H RP, metformin treatment successfully enhanced P23H traffic to the rod outer segment, but this led to reduced photoreceptor function and increased photoreceptor cell death. The metformin-rescued P23H rhodopsin was still intrinsically unstable and led to increased structural instability of the rod outer segments. These data suggest that improving the traffic of misfolding rhodopsin mutants is unlikely to be a practical therapy, because of their intrinsic instability and long half-life in the outer segment, but also highlights the potential of altering translation through AMPK to improve protein function in other protein misfolding diseases

    Effects of Carbon Dioxide Aerosols on the Viability of Escherichia coli during Biofilm Dispersal

    Get PDF
    A periodic jet of carbon dioxide (CO2) aerosols is a very quick and effective mechanical technique to remove biofilms from various substrate surfaces. However, the impact of the aerosols on the viability of bacteria during treatment has never been evaluated. In this study, the effects of high-speed CO2 aerosols, a mixture of solid and gaseous CO2, on bacteria viability was studied. It was found that when CO2 aerosols were used to disperse biofilms of Escherichia coli, they led to a significant loss of viability, with approximately 50% of the dispersed bacteria killed in the process. By comparison, 75.6% of the biofilm-associated bacteria were viable when gently dispersed using Proteinase K and DNase I. Indirect proof that the aerosols are damaging the bacteria was found using a recombinant E. coli expressing the cyan fluorescent protein, as nearly half of the fluorescence was found in the supernatant after CO2 aerosol treatment, while the rest was associated with the bacterial pellet. In comparison, the supernatant fluorescence was only 9% when the enzymes were used to disperse the biofilm. As such, these CO2 aerosols not only remove biofilm-associated bacteria effectively but also significantly impact their viability by disrupting membrane integrity.open

    Genomic Structure of and Genome-Wide Recombination in the Saccharomyces cerevisiae S288C Progenitor Isolate EM93

    Get PDF
    The diploid isolate EM93 is the main ancestor to the widely used Saccharomyces cerevisiae haploid laboratory strain, S288C. In this study, we generate a high-resolution overview of the genetic differences between EM93 and S288C. We show that EM93 is heterozygous for >45,000 polymorphisms, including large sequence polymorphisms, such as deletions and a Saccharomyces paradoxus introgression. We also find that many large sequence polymorphisms (LSPs) are associated with Ty-elements and sub-telomeric regions. We identified 2,965 genetic markers, which we then used to genotype 120 EM93 tetrads. In addition to deducing the structures of all EM93 chromosomes, we estimate that the average EM93 meiosis produces 144 detectable recombination events, consisting of 87 crossover and 31 non-crossover gene conversion events. Of the 50 polymorphisms showing the highest levels of non-crossover gene conversions, only three deviated from parity, all of which were near heterozygous LSPs. We find that non-telomeric heterozygous LSPs significantly reduce meiotic recombination in adjacent intervals, while sub-telomeric LSPs have no discernable effect on recombination. We identified 203 recombination hotspots, relatively few of which are hot for both non-crossover gene conversions and crossovers. Strikingly, we find that recombination hotspots show limited conservation. Some novel hotspots are found adjacent to heterozygous LSPs that eliminate other hotspots, suggesting that hotspots may appear and disappear relatively rapidly

    Genetic Basis of Hidden Phenotypic Variation Revealed by Increased Translational Readthrough in Yeast

    Get PDF
    Eukaryotic release factors 1 and 3, encoded by SUP45 and SUP35, respectively, in Saccharomyces cerevisiae, are required for translation termination. Recent studies have shown that, besides these two key factors, several genetic and epigenetic mechanisms modulate the efficiency of translation termination. These mechanisms, through modifying translation termination fidelity, were shown to affect various cellular processes, such as mRNA degradation, and in some cases could confer a beneficial phenotype to the cell. The most studied example of such a mechanism is [PSI+], the prion conformation of Sup35p, which can have pleiotropic effects on growth that vary among different yeast strains. However, genetic loci underlying such readthrough-dependent, background-specific phenotypes have yet to be identified. Here, we used sup35C653R, a partial loss-of-function allele of the SUP35 previously shown to increase readthrough of stop codons and recapitulate some [PSI+]-dependent phenotypes, to study the genetic basis of phenotypes revealed by increased translational readthrough in two divergent yeast strains: BY4724 (a laboratory strain) and RM11_1a (a wine strain). We first identified growth conditions in which increased readthrough of stop codons by sup35C653R resulted in different growth responses between these two strains. We then used a recently developed linkage mapping technique, extreme QTL mapping (X-QTL), to identify readthrough-dependent loci for the observed growth differences. We further showed that variation in SKY1, an SR protein kinase, underlies a readthrough-dependent locus observed for growth on diamide and hydrogen peroxide. We found that the allelic state of SKY1 interacts with readthrough level and the genetic background to determine growth rate in these two conditions

    Modulation of AÎČ(42 )low-n oligomerization using a novel yeast reporter system

    Get PDF
    BACKGROUND: While traditional models of Alzheimer's disease focused on large fibrillar deposits of the AÎČ(42 )amyloid peptide in the brain, recent work suggests that the major pathogenic effects may be attributed to SDS-stable oligomers of AÎČ(42). These AÎČ(42 )oligomers represent a rational target for therapeutic intervention, yet factors governing their assembly are poorly understood. RESULTS: We describe a new yeast model system focused on the initial stages of AÎČ(42 )oligomerization. We show that the activity of a fusion of AÎČ(42 )to a reporter protein is compromised in yeast by the formation of SDS-stable low-n oligomers. These oligomers are reminiscent of the low-n oligomers formed by the AÎČ(42 )peptide in vitro, in mammalian cell culture, and in the human brain. Point mutations previously shown to inhibit AÎČ(42 )aggregation in vitro, were made in the AÎČ(42 )portion of the fusion protein. These mutations both inhibited oligomerization and restored activity to the fusion protein. Using this model system, we found that oligomerization of the fusion protein is stimulated by millimolar concentrations of the yeast prion curing agent guanidine. Surprisingly, deletion of the chaperone Hsp104 (a known target for guanidine) inhibited oligomerization of the fusion protein. Furthermore, we demonstrate that Hsp104 interacts with the AÎČ(42)-fusion protein and appears to protect it from disaggregation and degradation. CONCLUSION: Previous models of Alzheimer's disease focused on unravelling compounds that inhibit fibrillization of AÎČ(42), i.e. the last step of AÎČ(42 )assembly. However, inhibition of fibrillization may lead to the accumulation of toxic oligomers of AÎČ(42). The model described here can be used to search for and test proteinacious or chemical compounds for their ability to interfere with the initial steps of AÎČ(42 )oligomerization. Our findings suggest that yeast contain guanidine-sensitive factor(s) that reduce the amount of low-n oligomers of AÎČ(42). As many yeast proteins have human homologs, identification of these factors may help to uncover homologous proteins that affect AÎČ(42 )oligomerization in mammals

    Amyloid-Mediated Sequestration of Essential Proteins Contributes to Mutant Huntingtin Toxicity in Yeast

    Get PDF
    BACKGROUND: Polyglutamine expansion is responsible for several neurodegenerative disorders, among which Huntington disease is the most well-known. Studies in the yeast model demonstrated that both aggregation and toxicity of a huntingtin (htt) protein with an expanded polyglutamine region strictly depend on the presence of the prion form of Rnq1 protein ([PIN+]), which has a glutamine/asparagine-rich domain. PRINCIPAL FINDINGS: Here, we showed that aggregation and toxicity of mutant htt depended on [PIN+] only quantitatively: the presence of [PIN+] elevated the toxicity and the levels of htt detergent-insoluble polymers. In cells lacking [PIN+], toxicity of mutant htt was due to the polymerization and inactivation of the essential glutamine/asparagine-rich Sup35 protein and related inactivation of another essential protein, Sup45, most probably via its sequestration into Sup35 aggregates. However, inhibition of growth of [PIN+] cells depended on Sup35/Sup45 depletion only partially, suggesting that there are other sources of mutant htt toxicity in yeast. CONCLUSIONS: The obtained data suggest that induced polymerization of essential glutamine/asparagine-rich proteins and related sequestration of other proteins which interact with these polymers represent an essential source of htt toxicity

    Epidemiology of nausea and vomiting of pregnancy: prevalence, severity, determinants, and the importance of race/ethnicity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies that contributed to the epidemiology of nausea and vomiting of pregnancy have reported conflicting findings, and often failed to account for all possible co-variables necessary to evaluate the multidimensional associations. The objectives of this study were to: 1) Estimate the prevalence and the severity of nausea and vomiting of pregnancy during the 1<sup>st </sup>and the 2<sup>nd </sup>trimester of pregnancy, and 2) Identify determinants of presence and severity of nausea and vomiting of pregnancy during the 1<sup>st </sup>and 2<sup>nd </sup>trimesters separately, with a special emphasis on the impact of race/ethnicity.</p> <p>Methods</p> <p>A prospective study including pregnant women attending the Centre Hospitalier Universitaire (CHU) Sainte-Justine or RenĂ©-Laennec clinics for their prenatal care was conducted from 2004 to 2006. Women were eligible if they were ≄ 18 years of age, and ≀ 16 weeks of gestation. Women were asked to fill out a 1<sup>st </sup>trimester self-administered questionnaire and were interviewed over the telephone during their 2<sup>nd </sup>trimester of pregnancy. Presence of nausea and vomiting of pregnancy was based on the reporting of pregnant women (yes/no); severity of symptoms was measured by the validated modified-PUQE index.</p> <p>Results</p> <p>Of the 367 women included in the study, 81.2% were Caucasians, 10.1% Blacks, 4.6% Hispanics, and 4.1% Asians. Multivariate analyses showed that race/ethnicity was significantly associated with a decreased likelihood of reporting nausea and vomiting of pregnancy (Asians vs. Caucasians OR: 0.13; 95%CI 0.02–0.73; and Blacks vs. Caucasians OR: 0.29; 95%CI 0.09–0.99).</p> <p>Conclusion</p> <p>Our study showed that race/ethnicity was associated with the reporting of nausea and vomiting of pregnancy in the 1<sup>st </sup>trimester of pregnancy.</p

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal
    • 

    corecore