18 research outputs found

    Rhythmic influence of top-down perceptual priors in the phase of pre-stimulus occipital alpha oscillations

    Get PDF
    Prior expectations have a powerful influence on perception, biasing both decision and confidence. However, how this occurs at the neural level remains unclear. It has been suggested that spontaneous alpha-band neural oscillations represent rhythms of the perceptual system that periodically modulate perceptual judgements. We hypothesised that these oscillations instantiate the effects of expectations. While collecting scalp EEG, participants performed a detection task that orthogonally manipulated perceptual expectations and attention. Trial-by-trial retrospective confidence judgements were also collected. Results showed that independently of attention, pre-stimulus occipital alpha phase predicted the weighting of expectations on yes/no decisions. Moreover, phase predicted the influence of expectations on confidence. Thus, expectations periodically bias objective and subjective perceptual decision-making together, prior to stimulus onset. Our results suggest that alphaband neural oscillations periodically transmit prior evidence to visual cortex, changing the baseline from which evidence accumulation begins. In turn, our results inform accounts of how expectations shape early visual processing

    Larger Stimuli Require Longer Processing Time for Perception

    Get PDF
    The time it takes for a stimulus to reach awareness is often assessed by measuring reaction times (RTs) or by a temporal order judgement (TOJ) task in which perceived timing is compared against a reference stimulus. Dissociations of RT and TOJ have been reported earlier in which increases in stimulus intensity such as luminance intensity results in a decrease of RT, whereas perceived perceptual latency in a TOJ task is affected to a lesser degree. Here, we report that a simple manipulation of stimulus size has stronger effects on perceptual latency measured by TOJ than on motor latency measured by RT tasks. When participants were asked to respond to the appearance of a simple stimulus such as a luminance blob, the perceptual latency measured against a standard reference stimulus was up to 40 ms longer for a larger stimulus. In other words, the smaller stimulus was perceived to occur earlier than the larger one. RT on the other hand was hardly affected by size. The TOJ results were further replicated in a simultaneity judgement task, suggesting that the effects of size are not due to TOJ-specific response biases but more likely reflect an effect on perceived timing

    Domain-general enhancements of metacognitive ability through adaptive training.

    Get PDF
    The metacognitive ability to introspect about self-performance varies substantially across individuals. Given that effective monitoring of performance is deemed important for effective behavioral control, intervening to improve metacognition may have widespread benefits, for example in educational and clinical settings. However, it is unknown whether and how metacognition can be systematically improved through training independently of task performance, or whether metacognitive improvements generalize across different task domains. Across 8 sessions, here we provided feedback to two groups of participants in a perceptual discrimination task: an experimental group (n = 29) received feedback on their metacognitive judgments, while an active control group (n = 32) received feedback on their decision performance only. Relative to the control group, adaptive training led to increases in metacognitive calibration (as assessed by Brier scores), which generalized both to untrained stimuli and an untrained task (recognition memory). Leveraging signal detection modeling we found that metacognitive improvements were driven both by changes in metacognitive efficiency (meta-d'/d') and confidence level, and that later increases in metacognitive efficiency were positively mediated by earlier shifts in confidence. Our results reveal a striking malleability of introspection and indicate the potential for a domain-general enhancement of metacognitive abilities. (PsycINFO Database Record (c) 2018 APA, all rights reserved)

    The Confidence Database

    Get PDF
    Understanding how people rate their confidence is critical for the characterization of a wide range of perceptual, memory, motor and cognitive processes. To enable the continued exploration of these processes, we created a large database of confidence studies spanning a broad set of paradigms, participant populations and fields of study. The data from each study are structured in a common, easy-to-use format that can be easily imported and analysed using multiple software packages. Each dataset is accompanied by an explanation regarding the nature of the collected data. At the time of publication, the Confidence Database (which is available at https://osf.io/s46pr/) contained 145 datasets with data from more than 8,700 participants and almost 4 million trials. The database will remain open for new submissions indefinitely and is expected to continue to grow. Here we show the usefulness of this large collection of datasets in four different analyses that provide precise estimations of several foundational confidence-related effects

    Trial-by-trial predictions of subjective time from human brain activity

    No full text
    Human experience of time exhibits systematic, context-dependent deviations from clock time; for example, time is experienced differently at work than on holiday. Here we test the proposal that differences from clock time in subjective experience of time arise because time estimates are constructed by accumulating the same quantity that guides perception: salient events. Healthy human participants watched naturalistic, silent videos of up to 24 seconds in duration and estimated their duration while fMRI was acquired. We were able to reconstruct trial-by-trial biases in participants’ duration reports, which reflect subjective experience of duration, purely from salient events in their visual cortex BOLD activity. By contrast, salient events in neither of two control regions – auditory and somatosensory cortex – were predictive of duration biases. These results held despite being able to (trivially) predict clock time from all three brain areas. Our results reveal that the information arising during perceptual processing of a dynamic environment provides a sufficient basis for reconstructing human subjective time duration
    corecore