11 research outputs found

    The Effect of Language Type and Perceived Controllability on Stigma and Compassion

    Get PDF
    Previous research suggests that mental health stigma creates significant barriers to treatment seeking and adherence, diminishes treatment outcomes, and motivates social rejection towards people experiencing mental illness; by contrast, compassion seems to offer protective effects, improving treatment outcomes and helping behavior. The current work extends the established literature by experimentally examining the independent and interactive effects of two factors theorized to influence stigma and compassion: controllability and language. Participants read vignettes about hypothetical mental illnesses explained with a genetic attribution (indicating low controllability) or a behavioral attribution (indicating high controllability) and completed measures of perceived controllability, stigma, and compassion. We found that genetic etiology, compared to behavioral etiology, decreased stigma and increased compassion. Although not statistically significant, preliminary evidence suggests that language might interact with etiology to affect stigma. In the behavioral etiology condition, identity-first language (compared to person-first) exacerbated stigma, whereas, in the genetic etiology condition, this effect was descriptively reversed, though statistically nonsignificant. Our findings provide evidence that emphasizing the contribution of uncontrollable factors (e.g., genetics) to psychopathology could help reduce stigma and increase compassion for people experiencing mental illness. Language may also interact with controllability to inform stigma. This work could aid in advising empathetic and supportive language practices dependent on condition characteristics (e.g., perceived controllability), however, replication is needed to demonstrate the reliability of these effects

    Structural Basis of Cytotoxicity Mediated by the Type III Secretion Toxin ExoU from Pseudomonas aeruginosa

    Get PDF
    The type III secretion system (T3SS) is a complex macromolecular machinery employed by a number of Gram-negative pathogens to inject effectors directly into the cytoplasm of eukaryotic cells. ExoU from the opportunistic pathogen Pseudomonas aeruginosa is one of the most aggressive toxins injected by a T3SS, leading to rapid cell necrosis. Here we report the crystal structure of ExoU in complex with its chaperone, SpcU. ExoU folds into membrane-binding, bridging, and phospholipase domains. SpcU maintains the N-terminus of ExoU in an unfolded state, required for secretion. The phospholipase domain carries an embedded catalytic site whose position within ExoU does not permit direct interaction with the bilayer, which suggests that ExoU must undergo a conformational rearrangement in order to access lipids within the target membrane. The bridging domain connects catalytic domain and membrane-binding domains, the latter of which displays specificity to PI(4,5)P2. Both transfection experiments and infection of eukaryotic cells with ExoU-secreting bacteria show that ExoU ubiquitination results in its co-localization with endosomal markers. This could reflect an attempt of the infected cell to target ExoU for degradation in order to protect itself from its aggressive cytotoxic action

    Effects of Controllability and Language on Stigma Toward Mental Illness

    No full text
    Although past work consistently demonstrates perceivers stigmatize mental illness; which dimensions of stigma are relevant for specific conditions remains debated (Brohan et al., 2010). In the current work, we manipulated (between subjects) the controllability of fictitious mental illnesses and examined participants stigmatization across six dimensions (Fear, Help, Forcing Treatment, and Negative Emotions; Brown, 2008). We also examined whether effects of controllability were moderated by language (within subjects; person-first vs identity-first). We consistently found effects of controllability such that participants in the low (compared to high) condition responded with more fear, empathy, negative emotion, and intention to force treatment, but also attributed less responsibility and reported less tendency to help. Participants responded with more negative emotion toward a condition describe with person-first (relative to identity-first). We found no evidence that language moderated effects of controllability. This work highlights the multifaceted nature of mental health stigma, and suggests that controllability may be an important, but nuanced, factor in mental health stigma

    Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils

    No full text
    © 2016 Macmillan Publishers Limited, part of Springer Nature. Increasing temperatures in northern high latitudes are causing permafrost to thaw, making large amounts of previously frozen organic matter vulnerable to microbial decomposition. Permafrost thaw also creates a fragmented landscape of drier and wetter soil conditions that determine the amount and form (carbon dioxide (CO2), or methane (CH 4)) of carbon (C) released to the atmosphere. The rate and form of C release control the magnitude of the permafrost C feedback, so their relative contribution with a warming climate remains unclear. We quantified the effect of increasing temperature and changes from aerobic to anaerobic soil conditions using 25 soil incubation studies from the permafrost zone. Here we show, using two separate meta-analyses, that a 10 °C increase in incubation temperature increased C release by a factor of 2.0 (95% confidence interval (CI), 1.8 to 2.2). Under aerobic incubation conditions, soils released 3.4 (95% CI, 2.2 to 5.2) times more C than under anaerobic conditions. Even when accounting for the higher heat trapping capacity of CH 4, soils released 2.3 (95% CI, 1.5 to 3.4) times more C under aerobic conditions. These results imply that permafrost ecosystems thawing under aerobic conditions and releasing CO2 will strengthen the permafrost C feedback more than waterlogged systems releasing CO2 and CH 4 for a given amount of C

    Large loss of CO<sub>2</sub> in winter observed across the northern permafrost region

    No full text
    Recent warming in the Arctic, which has been amplified during the winter, greatly enhances microbial decomposition of soil organic matter and subsequent release of carbon dioxide (CO2). However, the amount of CO2 released in winter is not known and has not been well represented by ecosystem models or empirically based estimates. Here we synthesize regional in situ observations of CO2 flux from Arctic and boreal soils to assess current and future winter carbon losses from the northern permafrost domain. We estimate a contemporary loss of 1,662 TgC per year from the permafrost region during the winter season (October–April). This loss is greater than the average growing season carbon uptake for this region estimated from process models (−1,032 TgC per year). Extending model predictions to warmer conditions up to 2100 indicates that winter CO2 emissions will increase 17% under a moderate mitigation scenario—Representative Concentration Pathway 4.5—and 41% under business-as-usual emissions scenario—Representative Concentration Pathway 8.5. Our results provide a baseline for winter CO2 emissions from northern terrestrial regions and indicate that enhanced soil CO2 loss due to winter warming may offset growing season carbon uptake under future climatic conditions

    BioTIME:a database of biodiversity time series for the Anthropocene

    No full text
    Abstract Motivation: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community‐led open‐source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene. Main types of variables included: The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record. Spatial location and grain: BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km² (158 cm²) to 100 km² (1,000,000,000,000 cm²). Time period and grain: BioTIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year. Major taxa and level of measurement: BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates. Software format: .csv and .SQL

    BioTIME:a database of biodiversity time series for the Anthropocene

    No full text
    Motivation: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community led open-source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene.Main types of variables included: The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of two, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology andcontextual information about each record.Spatial location and grain: BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km2 (158 cm2) to 100 km2 (1 000 000 000 000 cm2).Time period and grain: BioTIME records span from 1874 to 2016. The minimum temporal grain across all datasets in BioTIME is year.Major taxa and level of measurement: BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton, and terrestrial invertebrates to small and large vertebrates.Software format: .csv and .SQ
    corecore