755 research outputs found

    Scanning For Dark Matter Subhalos in Hubble Space Telescope Imaging of 54 Strong Lenses

    Get PDF
    The cold dark matter (DM) model predicts that every galaxy contains thousands of DM subhalos; almost all other DM models include a physical process that smooths away the subhalos. The subhalos are invisible, but could be detected via strong gravitational lensing, if they lie on the line of sight to a multiply-imaged background source, and perturb its apparent shape. We present a predominantly automated strong lens analysis framework, and scan for DM subhalos in Hubble Space Telescope imaging of 54 strong lenses. We identify two compelling DM subhalo candidates (including one previously found in SLACS0946+1006), where a subhalo is favoured after every systematic test we perform. We find that the detectability of subhalos depends upon the assumed parametric form for the lens galaxy's mass distribution. Comparing fits which assume several more complex mass models reveals 88 additional (generally lower mass) DM subhalo candidates worthy of further study, and the removal of 7 false positives. We identify 38 non-detections, which are vital to building up enough statistical power to test DM models. Future work will apply even more flexible models to the results of this study, to constrain different DM models. Our full analysis results are available at https://github.com/Jammy2211/autolens_subhalo.Comment: 25 Pages, 15 Figure

    Beyond the bulge–halo conspiracy? Density profiles of early-type galaxies from extended-source strong lensing

    Get PDF
    Observations suggest that the dark matter and stars in early-type galaxies ‘conspire’ to produce a surprisingly simple distribution of total mass, ρ(r) ∝ ρ−γ, with γ ≈ 2. We measure the distribution of mass in 48 early-type galaxies that gravitationally lens a resolved background source. By fitting the source light in every pixel of images from the Hubble Space Telescope, we find a mean ⟨γ⟩=2.075+0.023−0.024 with an intrinsic scatter between galaxies of σγ=0.172+0.022−0.032 for the overall sample. This is consistent with and has similar precision to traditional techniques that employ spectroscopic observations to supplement lensing with mass estimates from stellar dynamics. Comparing measurements of γ for individual lenses using both techniques, we find a statistically insignificant correlation of −0.150+0.223−0.217 between the two, indicating a lack of statistical power or deviations from a power-law density in certain lenses. At fixed surface mass density, we measure a redshift dependence, ∂⟨γ⟩/z=0.345+0.322−0.296⁠, that is consistent with traditional techniques for the same sample of Sloan Lens ACS and GALaxy-Lyα EmitteR sYstems (GALLERY) lenses. Interestingly, the consistency breaks down when we measure the dependence of γ on the surface mass density of a lens galaxy. We argue that this is tentative evidence for an inflection point in the total mass-density profile at a few times the galaxy effective radius – breaking the conspiracy

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    Combined searches for the production of supersymmetric top quark partners in proton-proton collisions at root s=13 TeV

    Get PDF
    A combination of searches for top squark pair production using proton-proton collision data at a center-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 137 fb(-1) collected by the CMS experiment, is presented. Signatures with at least 2 jets and large missing transverse momentum are categorized into events with 0, 1, or 2 leptons. New results for regions of parameter space where the kinematical properties of top squark pair production and top quark pair production are very similar are presented. Depending on themodel, the combined result excludes a top squarkmass up to 1325 GeV for amassless neutralino, and a neutralinomass up to 700 GeV for a top squarkmass of 1150 GeV. Top squarks with masses from 145 to 295 GeV, for neutralino masses from 0 to 100 GeV, with a mass difference between the top squark and the neutralino in a window of 30 GeV around the mass of the top quark, are excluded for the first time with CMS data. The results of theses searches are also interpreted in an alternative signal model of dark matter production via a spin-0 mediator in association with a top quark pair. Upper limits are set on the cross section for mediator particle masses of up to 420 GeV

    Probing effective field theory operators in the associated production of top quarks with a Z boson in multilepton final states at root s=13 TeV

    Get PDF
    Peer reviewe

    Search for long-lived particles decaying to jets with displaced vertices in proton-proton collisions at root s=13 Te V

    Get PDF
    A search is presented for long-lived particles produced in pairs in proton-proton collisions at the LHC operating at a center-of-mass energy of 13 TeV. The data were collected with the CMS detector during the period from 2015 through 2018, and correspond to a total integrated luminosity of 140 fb(-1). This search targets pairs of long-lived particles with mean proper decay lengths between 0.1 and 100 mm, each of which decays into at least two quarks that hadronize to jets, resulting in a final state with two displaced vertices. No significant excess of events with two displaced vertices is observed. In the context of R-parity violating supersymmetry models, the pair production of long-lived neutralinos, gluinos, and top squarks is excluded at 95% confidence level for cross sections larger than 0.08 fb, masses between 800 and 3000 GeV, and mean proper decay lengths between 1 and 25 mm.Peer reviewe

    Observation of tW production in the single-lepton channel in pp collisions at root s=13 TeV

    Get PDF
    A measurement of the cross section of the associated production of a single top quark and a W boson in final states with a muon or electron and jets in proton-proton collisions at root s = 13 TeV is presented. The data correspond to an integrated luminosity of 36 fb(-1) collected with the CMS detector at the CERN LHC in 2016. A boosted decision tree is used to separate the tW signal from the dominant t (t) over bar background, whilst the subleading W+jets and multijet backgrounds are constrained using data-based estimates. This result is the first observation of the tW process in final states containing a muon or electron and jets, with a significance exceeding 5 standard deviations. The cross section is determined to be 89 +/- 4 (stat) +/- 12 (syst) pb, consistent with the standard model.Peer reviewe
    corecore