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A B S T R A C T 

The cold dark matter (DM) model predicts that every galaxy contains thousands of DM subhaloes; almost all other DM models 
include a physical process that smooths away the subhaloes. The subhaloes are invisible, but could be detected via strong 

gravitational lensing, if they lie on the line of sight to a multiply imaged background source, and perturb its apparent shape. 
We present a predominantly automated strong lens analysis framework, and scan for DM subhaloes in Hubble Space Telescope 
imaging of 54 strong lenses. We identify five DM subhalo candidates, including two especially compelling candidates (one 
pre viously kno wn in SLACS0946 + 1006) where a subhalo is fa v oured after all of our tests for systematics. We find that the 
detectability of subhaloes depends upon the assumed parametric form for the lens galaxy’s mass distribution, especially its 
degree of azimuthal freedom. Using separate components for DM and stellar mass reveals two DM subhalo candidates and 

remo v es four false positives compared to the single power-law mass model that is common in the literature. We identify 45 

lenses without substructures, the number of which is key to statistical tests able to rule out models of, for example, warm or 
self-interacting DM. Our full analysis results are available at ht tps://github.com/Jammy2211/aut olens subhalo . 
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 I N T RO D U C T I O N  

he nature by which cold dark matter (CDM) leads to the formation
f the large-scale structure of the Universe, the ‘cosmic web’, has
een modelled in incredible detail by state-of-the-art cosmological
 -body simulations (Springel et al. 2005 ). The picture of hierarchical
rowth has been established, where density peaks of CDM within the
niverse’s initial density field collapse to form self-bound virialized
aloes. The lowest mass haloes form first, and successively merge
o form higher mass haloes, a process that occurs o v er the full
ange of halo masses in a self-similar manner. In conjunction with a
osmological constant, � , this process describes structure formation
n our concordance cosmological model, lambda-CDM ( � CDM),
hich on large scales has now made numerous testable predictions
hich have shown remarkable agreement with observations, such as

he clustering of galaxies (Hildebrandt et al. 2017 ) and the growth of
aryon acoustic oscillations (Anderson et al. 2014 ). 
A key prediction of � CDM on smaller scales is the hierarchy of

ubhaloes within each dark matter (DM) halo (Diemand et al. 2008 ;
pringel et al. 2008 ). This states that orbiting within every DM halo
 E-mail: james.w.nightingale@durham.ac.uk 
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re many lower mass satellite haloes that it has previously accreted.
his hierarchy extends on, with DM haloes hosting subhaloes that

hemselves host subhaloes (Diemand, Kuhlen & Madau 2007 ).
DM thus predicts an abundance of low-mass (10 −3 to 10 8 M �)
aloes throughout the Universe. The majority of such haloes are
ompletely dark, as radiation from the ultraviolet background reheats
he intergalactic medium and prevents gas from cooling and forming
tars (Sawala et al. 2016 ; Benitez-Llambay & Frenk 2020 ). Owing
o this lack of luminous emission, DM haloes below masses of
0 8.5 M � are yet to be observed, with the lowest mass DM haloes
nown being those of Milky Way dwarf galaxies (Belokurov et al.
014 ). Observing completely dark haloes below masses of 10 8.5 M �
ould provide evidence in fa v our of � CDM on scales smaller than
re viously tested. Ho we ver, if one could definiti vely sho w their
bsence, it would indicate that a different model for the DM particle is
eeded, for example warmer fla v ours (Bode, Ostriker & Turok 2001 ).
his would then disfa v our a Weakly Interacting Massive Particle

rom being the DM, and would instead point to alternatives which
hange the relativistic properties of DM in the early universe, so as
o suppress halo formation at low masses (e.g. the sterile neutrino,
hi & Fuller 1999 ). 
Strong gravitational lensing, where a background source is mul-

iply imaged by a foreground deflector galaxy, provides a means to
© 2023 The Author(s). 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 
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etect DM subhaloes that do not emit light. When an extended source
alaxy is lensed, light rays emanating from different regions of the 
ource trace through (and are lensed by) different regions of the lens.
he observed, distorted shape thus contains a high-resolution imprint 
f the distribution of mass in the lens. If a DM subhalo is along any
ine of sight, it will perturb the image in a unique and observable way.
his technique has provided multiple detections of DM subhaloes 

Ve getti et al. 2010 , 2012 , 2014 ; Hezav eh et al. 2016 ) as well as non-
etections that further constrain the subhalo mass function (Ritondale 
t al. 2019b ). These observations have been translated into constraints 
n sterile neutrino cosmologies (Vegetti et al. 2018 ; Enzi et al. 2021 ).
he technique also recently led to the disco v ery of an ultramassive
lack hole (Nightingale et al. 2023b ). 
Much effort has gone into understanding which DM subhaloes 

his technique can detect. Sensitivity mapping has shown that 
ubble Space Telescope ( HST ) imaging can detect subhaloes of
ass ∼10 9.0 M �, whereas higher resolution very long baseline 

nterferometry probes masses as low as ∼10 6.0 M � (McKean et al. 
015 ; Li et al. 2016 ; Despali et al. 2018 , 2022 ). These studies assume
M substructures lie on a mass–concentration relation (e.g. Ludlow 

t al. 2016 ). Instead, Amorisco et al. ( 2022 ) performed sensitivity
apping o v er the scatter in this relation and showed that DM haloes
0.5 dex lower in mass become detectable when they have a higher

han average concentration. Furthermore, for DM cosmologies with 
 cut-off mass (e.g. around ∼10 8.5 M � for warmer DM with a sterile
eutrino) high concentration haloes below this cut-off do not exist 
nd therefore do not become detectable – amplifying the contrast 
etween the expected number of detections in CDM and warmer 
odels. DM substructures in the lens galaxy and line of sight objects

t a different redshift to the lens are both detectable (Li et al. 2017 ;
espali et al. 2018, 2022 ; Amorisco et al. 2022 ; He et al. 2022 ), with

heir relative contributions depending on the redshifts of the lens and 
he source. If subhaloes within the lens galaxy are detected, then 
nterpreting them in terms of DM models is subject to uncertainties 
ue to galaxy formation, for example reductions in subhalo mass by 
idal stripping or stellar feedback (Despali & Vegetti 2017 ). Line-of-
ight objects are unaffected by this. 

Subhalo analysis comprises two parts: (i) confirming that the 
nclusion of a parametric DM subhalo is fa v oured when fitting
he lens data and; (ii) for the detection to be reproduced by a
on-parametric model which adds corrections to the gravitational 
otential on top of the best-fitting mass model (Koopmans 2005 ; 
egetti & Koopmans 2009 ; Suyu et al. 2010 ; Ritondale et al.
019b ; Vernardos & Koopmans 2022 ). The latter, often called 
he ‘potential corrections’, requires that the non-parametric model 
f the convergence resembles a local o v er density of mass; the
xpected signal of a DM subhalo. Ho we ver, the correction often
roduces non-zero convergence on larger global scales, due to 
ystematics associated with the assumed mass model being too 
imple (e.g. Ritondale et al. 2019b ). In this scenario, a DM subhalo
andidate is rejected, irrespective of how much the parametric model 
a v ours the DM subhalo. Early implementations of the potential 
orrections relied on some level of human input to choose aspects 
ike the regularization (Koopmans 2005 ; Vegetti & Koopmans 2009 ), 
hereas Vernardos & Koopmans ( 2022 ) recently placed the method 

n a Bayesian framew ork. This w ork does not use the potential
orrections and therefore cannot make a definitive claim as to whether 
ny subhalo detection is genuine or not. Our focus is to understand
o w dif ferent lens model assumptions impact whether a parametric 
M subhalo is fa v oured. 
This work presents a predominantly automated search for sub- 

aloes in strong lenses using the open-source strong lens mod- 
lling software PYAUTOLENS 1 (Nightingale, Dye & Massey 2018 ; 
ightingale et al. 2021b ). The software approaches lens mod- 

lling using the same Bayesian framework as the methods of 
egetti & Koopmans ( 2009 ) and Hezaveh et al. ( 2016 ) but differs

n many aspects of its implementation (e.g. the source reconstruc- 
ion). We scan for subhaloes in a sample of 54 strong lenses
rom the Strong Lens Advanced Camera for Surv e ys (SLACS)
urv e y (Bolton et al. 2008 ) and BOSS GALaxy-Ly α EmitteR
Ystems (BELLS-GALLERY) sample (Shu et al. 2016 ). This sam- 
le includes 10 lenses analysed by Vegetti et al. ( 2010 , 2014 )
nd 16 of the systems analysed by Ritondale et al. ( 2019b ).
e therefore perform DM subhalo detection in 28 objects never 

reviously analysed. Our results build on Etherington et al. 
 2022 ), who performed automated lens modelling with PYAU- 
OLENS in a sample of 59 strong lenses from the SLACS and
ELLS-GALLERY samples and investigated the redshift evolu- 

ion of the lens galaxy mass distributions (Etherington et al. 
023b ). 
After an initial analysis of the 54 strong lenses we focus on ‘false

ositive’ detections. Here, a lens model including a DM subhalo is
a v oured at > 3 σ o v er a model without a DM subhalo, but more
etailed investigation led us to conclude the result is spurious. This
as been seen in previous studies and attributed to inflexibility of
ass models to fit the complex distribution in real galaxies (Hsueh

t al. 2016 , 2017 , 2018 ; He et al. 2023 ). To mitigate false positives,
revious studies have employed strict criteria for a DM subhalo 
etection, for example requiring that the Bayesian evidence of the 
ens model with a DM subhalo is fa v oured at 5 σ (Vegetti et al. 2014 )
r 10 σ (Ritondale et al. 2019b ). They are also flagged by the potential
orrections technique discussed previously. Our results do not imply 
hat any previous DM subhalo detections are false positives. Instead, 
e reproduce false positive signals found in previous studies (which 

re typically below the 5 σ or 10 σ threshold these studies used)
nd quantify which deficiencies in the strong lens model are the
ause, in order to outline where impro v ements should be made in the
uture. 

We place an emphasis on understanding what impact changing 
he lens galaxy mass model has on the final DM subhalo inference.

e scan for DM subhaloes assuming a total of five different mass
odel parametrizations from the literature (Chu et al. 2013 ; Tes-

ore & Metcalf 2015 ; Nightingale et al. 2019 ; O’Riordan, Warren &
ortlock 2020 ). We quantify whether fitting more complex models 

eads one to fa v our or reject a DM subhalo, when fitting a simpler
odel either did or did not. This is only possible because our analysis

s predominantly automated, and therefore straightforward to repeat 
ith a variety of model assumptions. Our large sample of 54 lenses
ields the first quantitative study of how different types of model
omplexity impact subhalo detectability. 

This paper is structured as follows. In Section 2 , we describe the
ST imaging data. In Section 3 , we describe PYAUTOLENS and our

ubstructure detection pipelines. In Section 4 , we show results for fits
o HST strong lenses. In Section 5 , we discuss the implications of our
easurements, and we give a summary in Section 6 . In Appendix B ,
e show our substructure detection method works on simulated 

mages. We assume a Planck 2015 cosmology throughout (Ade et al.
016 ). The analysis scripts and data used in this work are publically
vailable at https:// github.com/ Jammy2211/ autolens subhalo . 
MNRAS 527, 10480–10506 (2024) 
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 HUBBLE SPACE TELESCOPE DATA  

n this work, we fit HST imaging of 54 strong lenses from the
LACS (Bolton et al. 2008 ) and BELLS-GALLERY (Shu et al.
016 ) samples. Full details of these data sets and their data reduction
re given in Bolton et al. ( 2008 ) and Shu et al. ( 2016 ). SLACS
ata are observed in the HST Advanced Camera for Surv e ys F 814 W
and and BELLS-GALLERY the HST Wide Field Camera 3 F 606 W
and. Etherington et al. ( 2022 ) describe post-processing steps which
emo v e contaminating foreground light (e.g. of stars and line-of-sight
alaxies) via a graphical user interface (GUI). We only use the gold
ample presented in Etherington et al. ( 2022 ), which remo v es fiv e
enses where a poor lens light subtraction would ne gativ ely impact
he quality of the lens model. 

 M E T H O D  

.1 Ov er view 

e perform lens modelling using the open-source software PYAU-
OLENS , which is described in Nightingale & Dye ( 2015 ) and
ightingale et al. ( 2018 , 2021b ) and builds on the methods of
arren & Dye ( 2003 , WD03 hereafter), Suyu et al. ( 2006 ), and

egetti & Koopmans ( 2009 ). We compose pipelines which perform
redominantly automated lens modelling using the probabilistic
rogramming language PYAUTOFIT 2 (Nightingale, Hayes & Griffiths
021a ), a spin-off project of PYAUTOLENS which generalizes the
ethods used to model strong lenses into an accessible statistics

ibrary. 
A concise visual o v erview of the PYAUTOLENS analysis performed

n this work is shown in Fig. 1 . Given an observed image of a
trong lens the analysis: (i) defines a 3.5 arcmin circular mask
ithin which the lens model is fitted (this mask extends beyond

he lensed source in order to better constrain the lens light model);
ii) uses a model containing light and mass profiles for the lens
o produce model images of the lens galaxy and lensed source,
hich are convolved with the instrumental point spread function

PSF) and compared to the data; (iii) reconstructs the source galaxy
n the source plane using a Voronoi mesh and; (iv) produces a
ubhalo scanning map indicating how much a lens model with a
M subhalo at a specific location in the image plane increases

he Bayesian evidence compared to a lens model without a DM
ubhalo. 

We now describe each step in more detail. The following link
 https:// github.com/ Jammy2211/ autolens likelihood function ) con-
ains JUPYTER notebooks providing a visual step-by-step guide of
he PYAUTOLENS likelihood function used in this work. 

.2 Light profiles 

ight and mass profile quantities are computed using elliptical
oordinates ξ = 

√ 

x 2 + y 2 /q 2 , with minor to major axis-ratio q
nd position angle φ defined counterclockwise from the positive
 -axis. For model fitting, these are parametrized as two components
f ellipticity 

1 = 

1 − q 

1 + q 
sin 2 φ, ε2 = 

1 − q 

1 + q 
cos 2 φ. (1) 
NRAS 527, 10480–10506 (2024) 
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w  

s  

P  

i  
ight profiles are modelled using one or more elliptical S ́ersic
rofiles 

 Ser ( ξ ) = I exp 

{
− k 

[(
ξ

R 

) 1 
n 

− 1 

]}
, (2) 

hich have up to seven free parameters: ( x , y ), the light centre in
rcseconds, ( ε1 , ε2 ) the elliptical components, I , the intensity in
lectrons per second at the ef fecti ve radius R in arcseconds and n ,
he S ́ersic index. k is not a free parameter, but is instead a function
f n (Ciotti & Bertin 1999 ). This study assumes a model with two
 ́ersic profiles which have the same centre, with each individual
rofile’s intensities e v aluated and summed. Parameters are given the
uperscripts ‘bulge’ and ‘disc’, which are used to distinguish which
omponent of the lens galaxy they are modelling, for example, the
 ́ersic index of the bulge component is n bulge . 

.3 Mass profiles 

.3.1 Dark matter subhaloes 

M subhaloes (superscript ‘sub’) are modelled as a spherical
avarro–Frenk–White (NFW) profile. The NFW represents the
niversal density profile predicted for DM haloes by cosmological N -
ody simulations (Navarro, Frenk & White 1996 , 1997 ; Zhao 1996 ),
nd with a volume mass density given by 

= 

ρdark 
s 

( r /r dark 
s )(1 + r /r dark 

s ) 2 
. (3) 

he halo normalization is given by ρsub 
s and the scale radius in

rcseconds by r sub 
s . The DM normalization is parametrized using

 

sub 
200 (the enclosed mass in solar masses at the radius r 200 within
hich the average density is 200 times the critical density of the
niverse) as a free parameter. The scale radius is set via M 

sub 
200 using

he mean of the mass–concentration relation of Ludlow et al. ( 2016 ).
he convergence is given by 

( ξ ) = 2 κ sub 1 − F ( ξ ) 

ξ 2 − 1 
, (4) 

here 

( ξ ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 √ 

ξ2 −1 
arctan 

√ 

ξ 2 − 1 : ξ > 1 

1 √ 

1 −ξ2 
arctanh 

√ 

1 − ξ 2 : ξ < 1 

1 : ξ = 1 , 

(5) 

nd κ sub is related to the lens halo normalization by κ sub = ρs r s / � cr 

nd � cr is the critical surface density. The lens and source redshifts
re used to perform unit conversions, for example, to calculate M 

sub 
200 

n solar masses. All DM subhaloes are assumed to be at the lens
alaxy redshift. 

.3.2 Elliptical power law 

or the lens mass model, we assume an elliptical power-law (PL)
ensity profile representing the total mass of the lens (e.g. star and
M) of form 

( ξ ) = 

(3 − γ mass ) 

1 + q mass 

(
θmass 

E 

ξ

)γ mass −1 

, (6) 

here parameters associated with the lens mass profile have super-
cript ‘mass’. θmass 

E is the model Einstein radius in arcseconds. The
L density slope is γ mass , and setting γ mass = 2 gives the singular

sothermal ellipsoid (SIE) model. Deflection angles for the PL are

https://github.com/Jammy2211/autolens_likelihood_function
https://github.com/rhayes777/PyAutoFit
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Figure 1. A concise visual o v erview of the PYAUTOLENS analysis performed in this study, shown for an example strong lens SLACS1430 + 4105. The images 
from left to right are: (i) the observed HST imaging data of SLACS1430 + 4105; (ii) the model lens light and lensed source inferred from a PYAUTOLENS model 
fit; (iii) the inferred model source in the source plane, which is reconstructed using a Voronoi mesh and; (iv) the subhalo scanning results, where the colour 
bar shows the log Bayesian evidence increase for lens models including a subhalo within 2D segments of the image plane. The solid lines show the tangential 
critical curves and caustics and crosses in the subhalo scanning results show the inferred subhalo ( x sub , y sub ) coordinates for each model including a subhalo. 
The example subhalo scan of SLACS1430 + 4105 fa v ours a DM subhalo at ( x sub , y sub ) ∼ (0 . 2 arcsec , −1 . 2 arcsec ), ho we ver systematic tests of the lens mass 
model will reveal this is a false positive. 
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omputed via an implementation of the method of Tessore & Metcalf 
 2015 ) in PYAUTOLENS . 

.3.3 Broken power law 

e also fit the elliptical broken power-law (BPL) profile (O’Riordan, 
arren & Mortlock 2019 , 2020 , 2021 ), again representing the total
ass of the lens, with convergence 

( r ) = 

{ 

κmass 
E 

(
r mass 

b /r 
)t mass 

1 , r ≤ r mass 
b 

κmass 
E 

(
r mass 

b /r 
)t mass 

2 , r > r mass 
b 

, (7) 

here r mass 
b is the break radius in arcseconds, κmass 

E is the convergence 
t the break radius, t mass 

1 is the inner slope, and t mass 
2 is the outer slope.

.3.4 Power law with internal multipoles 

e fit an extension to the PL profile which includes multipole-like 
erms describing internal angular structure in its mass distribution, by 
xtending the parametrization given by Chu et al. ( 2013 ). This model
aptures smooth deviations from ellipticity in the mass distribution. 
he functional form of the convergence is 

( r , φ) = 

1 

2 

(
θmass 

E 

r 

)γ mass −1 

k mass 
m 

cos ( m ( φ − φmass 
m 

)) , (8) 

here we express the convergence in polar coordinates, with r 
n arcsecconds. m is the multipole order and m = 4. k mass 

m 

is the
ultipole strength and φmass 

m 

its orientation angle, which is defined 
ounterclockwise from the positive x -axis. The multipole θmass 

E and 
mass values are fixed to that of the underlying PL. We parametrize 
 

mass 
m 

and φmass 
m 

as multipole components ( εmp 
1 , ε

mp 
2 ) which are given 

y 

mass 
m 

= arctan 
ε

mp 
2 

ε
mp 
1 

, k mass 
m 

= 

√ 

ε
mp 
1 

2 + ε
mp 
2 

2 
. (9) 

.3.5 Stellar and dark matter mass 

e fit decomposed mass models for the lens, which decompose its
ass into its stellar and dark components (in contrast to the PL
odels abo v e). The stellar mass is modelled as a sum of S ́ersic
rofiles which are tied to those of the light. The S ́ersic profile given
y equation () is used to give the light matter surface density profile 

Ser ( ξ ) = � 

[
qξ

R 

]� 

I Ser ( ξ ) , (10) 

here � gives the mass-to-light ratio and � folds a radial dependence
nto the conversion of mass to light. A constant mass-to-light ratio
s given for � = 0. This work assumes there are two light profile
omponents (denoted the bulge and disc) which assume independent 
alues of � and �. We therefore do not assume that mass fully traces
ight. Deflection angles for this profile are computed via an adapted
mplementation of the method of Oguri ( 2021 ), which decomposes
he convergence profile into multiple cored steep elliptical profiles 
nd efficiently computes the deflection angles from each. 

The DM component of the lens galaxy’s host halo is given by an
lliptical NFW profile, whose parameters have superscript ‘dark’. 
his is again parametrized with M 

dark 
200 as a free parameter and a scale

adius set via the mean of the mass–concentration relation of Ludlow
t al. ( 2016 ). The convergence is given by equation ( 5 ). 

.3.6 Line-of-sight galaxies 

earby line-of-sight galaxies may be included as spherical isother- 
al spheres (SISs), corresponding to an SIE where ( εmass 

1 , εmass 
2 ) =

0 , 0). To decide whether to include line-of-sight galaxies in the mass
odel we use a GUI, where a user looks at 10 arcsec cut-outs of each

ens and clicks on up to two galaxies nearby to add to the mass
odel. Galaxies are selected subjectively based on their proximity 

nd size. Each galaxy is then included as an SIS, the centre of which
s fixed to the galaxy’s brightest pixel and with a redshift that is
he same as the lens galaxy. The prior on θmass 

E for each SIS is a
niform prior from 0.0 to 0.5 arcsec. For the majority of line-of-sight
alaxies a value of θmass 

E = 0 . 5 arcsec is significantly abo v e the mass
ne would estimate based on its luminosity. This is an intentional
hoice not to use more informative priors, so that we can investigate
ow line-of-sight galaxies change the DM inference with maximal 
reedom. 

Fig. 2 shows the five lenses with line-of-sight galaxies closest to the
ens galaxy centre, which are all within 2.0 arcsec of it. These objects
re close enough to the lensed source that we anticipate they will im-
act the inferred lens model. For the lenses SLACS0956 + 5100 and
ELLS0918 + 5104 the line-of-sight galaxy is within the Einstein 
MNRAS 527, 10480–10506 (2024) 
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Figure 2. The five lenses with line-of-sight galaxies that are closest to the centre of their lens galaxy, which should have an impact on the inferred lens 
model. For two lenses, SLACS0956 + 5100 and BELLS0918 + 5104, the line-of-sight galaxy is within the Einstein radius, whereas for SLACS0728 + 3835, 
BELLS0113 + 0250, and BELLS2342-0120 the galaxy(s) are slightly outside the Einstein radius. Black stars mark the centre of each line-of-sight galaxy, 
which are modelled with SIS mass profiles fixed to these centres. 
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adius, whereas for SLACS0728 + 3835, BELLS0113 + 0250 and
ELLS2342 − 0120 the galaxy(s) are slightly outside the Einstein

adius. Models including line-of-sight galaxies for the remaining 49
enses are performed, noting the galaxies are typically much further
e.g. o v er 4.0 arcsec) from the lens centre. 

.3.7 External shear 

n external shear (superscript ‘ext’) field is included and
arametrized as two elliptical components ( γ ext 

1 , γ ext 
2 ). The shear

agnitude, γ ext , and orientation measured counterclockwise from
orth, φext , are given by 

ext = 

√ 

γ ext 2 
1 + γ ext 2 

2 , tan 2 φext = 

γ ext 
2 

γ ext 
1 

. (11) 

he deflection angles due to the external shear are computed
nalytically. Every mass model above is combined with an external
hear. A recent study by Etherington et al. ( 2023a ) suggests that this
xternal shear component is representing missing complexity in the
ens mass distribution, as opposed to line-of-sight galaxies. 

.4 Source model 

fter subtracting the foreground lens emission and ray-tracing
oordinates to the source plane via the mass model, the source is
econstructed in the source plane using an adaptive mesh which
ccounts for irregular or asymmetric source morphologies. We use a
oronoi mesh with natural neighbour interpolation (Sibson 1981 ) and

n Appendix B we compare DM subhalo results assuming different
ource reconstruction methods. 

.4.1 Mesh centres 

he method first determines the centres of the I Voronoi source pixels.
nitial fits o v erlay a rectangular Cartesian grid of shape ( y pix , x pix )
 v er the image plane, which extends to and from the mask edges (e.g.
rom −3.5 to 3.5 arcsec for the mask shown in Fig. 1 ). y pix and x pix 

re the height and width of this grid in pixels and are treated as free
arameters. All coordinates on this uniform grid which fall within
he mask are retained and traced to the source plane via the mass
odel (pixels outside the mask are discarded). These coordinates,
 i , are used as the centre of the Voronoi cells, which therefore trace

he mass model magnification. 3 
NRAS 527, 10480–10506 (2024) 

 This corresponds to PYAUTOLENS ’s VoronoiNNMagnification mesh 
bject. 

m
5

n
N

Subsequent fits adapt the mesh centres M i to the source’s unlensed
orphology. This uses a previous model of the lensed source

mission, � j , which is used to compute the weights 

 j = ( 
� j − min � 

max � j − min � 

) + W floor + max � j . (12) 

he first term on the right-hand side runs from zero to one, where
alues closer to one correspond to the lensed source’s brightest
ixels. W floor controls how much weight is given to the source’s
rightest pixels and is a free parameter in certain fits. W is passed
o a weighted KMeans clustering algorithm (Pedregosa et al. 2011 )
o determine image-plane coordinates which are traced to the source
lane. The KMeans assumes N pix source pixels, which is treated as a
ree parameter in certain fits. This scheme adapts to the lensed source
mission. 4 

.4.2 Mapping matrix 

he reconstruction computes the linear superposition of PSF-
meared source pixel images which best fits the observed image.
his uses the mapping matrix f ij , which maps the j th pixel of each

ensed image to each source pixel i , giving a total of J lensed image
ixels and I source pixels. When constructing f ij we apply image-
lane subgridding of degree 4 × 4, meaning that 16 × J subpixels
re fractionally mapped to source pixels with a weighting of 1 

16 ,
emoving aliasing effects (Nightingale & Dye 2015 ). 

Each image subpixel is mapped to multiple Voronoi source
ixels weighted via interpolation. We use Voronoi natural neighbour
nterpolation via Sibson’s ( 1981 ) technique. F or ev ery subpix el, j , the

ethod considers a new polygon that adding this point to the Voronoi
esh computed from M i would create. The new polygon captures

ome of the area that was previously co v ered by its neighbours, which
he method computes and uses to compute the interpolation weights
n f ij as 

 = f ij = 

1 ∑ K 

i= 1 A capture 

K ∑ 

k= 1 

A capture z k , (13) 

here K is the number of neighbours of a given Voronoi cell i . 5 
esh objects. 
 More details about the natural neighbour interpolation tech- 
ique can be found at https:// gwlucastrig.github.io/ TinfourDocs/ 
aturalNeighborTinfourAlgorithm/index.html 

https://gwlucastrig.github.io/TinfourDocs/NaturalNeighborTinfourAlgorithm/index.html
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.4.3 Regularization 

erforming an inversion using equation ( 13 ) by itself is ill-posed,
herefore to a v oid o v erfitting noise the solution is regularized using
 linear regularization matrix H described by WD03. The matrix 
 applies a prior on the source reconstruction, penalizing solutions 
here the difference in reconstructed flux of neighbouring Voronoi 

ource pixels is large. Initial fits use gradient regularization (see 
D03) adapted to a Voronoi mesh (see Nightingale & Dye 2015 ). 6 

M subhalo results use a scheme which adapts the degree of
moothing to the reconstructed source’s luminous emission and 
nterpolates values at a cross of surrounding points. 7 The formalism 

or the calculation of these regularization matrices H is given in 
ppendix A . 

.4.4 Variance scaling 

ens galaxies can hav e comple x morphologies which leave signif-
cant central residuals after subtraction via multiple S ́ersic profiles, 
hich the source reconstruction will attempt to fit. We mitigate this
y allowing the method to increase the variances (the noise value in
ach image pixel) at the centre of an image. First, we estimate the
ractional contribution in each pixel j from the lens light 

Lens , j = 

Łj 

T j + ω Lens 
, (14) 

here Łj and T j are estimates of the lens light emission and total
mission from a previous lens model and ω Lens is a free parameter.
alues of Łj or T j less than 1 per cent their maximum value are

ounded up to this value to ensure no values are ne gativ e. �Lens is
ivided by its maximum value such that it ranges between values just
bo v e 0 and 1. Initial fits which do not have Łj and T j vectors use
obs 
j , the observed image statistical uncertainties. This contribution 
ap is used to scale the noise in lens light dominated pixels as 

j = ω Lens ( σ
obs 
j �Lens , j ) 

ω Lens2 , (15) 

here ω Lens and ω Lens2 are free parameters. 

.4.5 Inversion 

ollowing the formalism of WD03, we define the data vec- 
or � D i = 

∑ J 

j= 1 f ij ( d j − b j ) / ( σj ) 2 and curvature matrix F ik =
 J 

j= 1 f ij f kj / ( σj ) 2 , where d j are the observed image flux values
nd b j are the model lens light values. The source pixel surface
rightnesses are given by s = [ F + H ] −1 � D which are solved via a
inear inversion that minimizes 

2 + G L = 

J ∑ 

j= 1 

[
( 
∑ I 

i = 1 s i f ij ) + b j − d j 

σj 

]2 

+ s T H s . (16) 

he term 

∑ I 

i= 1 s i f ij maps the reconstructed source back to the image
lane for comparison with the observed data and G L = s T Hs is a
egularization term. 

The degree of smoothing is chosen objectively using the Bayesian 
ormalism introduced by Suyu et al. ( 2006 ). The likelihood function
 This corresponds to the PYAUTOLENS regularization scheme Constant . 
 This corresponds to the PYAUTOLENS regularization scheme Adaptive- 
rightnessSplit . 

e  

d

8

s taken from Dye et al. ( 2008 ) and is given by 

− 2 ln Z = χ2 + s T H s + ln [ det ( F + H ) ] − ln [ det ( H ) ] 

+ 

J ∑ 

j= 1 

ln 
[
2 π ( σ j ) 

2 
]
. (17) 

The step-by-step JUPYTER notebooks linked to in Section 3.1 de- 
cribe how the different terms in this likelihood function compare and
anks different source reconstructions, allowing one to objectively 
etermine the lens model that provides the best fit to the data in a
ayesian context. 

.5 Non-linear search 

e use the nested sampling algorithm dynesty (Speagle 2020 ) to
t every lens model. We use the static sampler with random walk
ested sampling, which tests revealed gave faster and more reliable 
ens model fits. 

.6 Lens modelling pipelines 

he models of lens mass, lens light, and source light are complex
nd their parameter spaces are highly dimensional. Without human 
ntervention or careful set up, the model-fitting algorithm (e.g. 
ynesty ) may converge very slowly to the global maximum 

 posteriori solution or falsely converge on a local maximum. 
YAUTOLENS therefore breaks the fit into a sequence of simpler 
ts. Using the probabilistic programming language PYAUTOFIT, 8 we 
t a series of parametric lens models with growing complexity. 
its to simpler model parametrizations provide information which 

nitializes subsequent fits to the next more complex model. We 
se the Source, Light, and Mass (SLaM) pipelines described by 
therington et al. ( 2022 , hereafter E22 ), Cao et al. ( 2021 ), and
e et al. ( 2023 ). Table 1 pro vides a step-by-step o v erview of the
ipelines used in this work. The SLaM pipelines are available at
ttps:// github.com/ Jammy2211/ autolens workspace . 
An o v ervie w of the SLaM pipelines is as follo ws: 

(i) Source pipelines. Initializes the Voronoi mesh source model 
y inferring a robust lens light subtraction (using a double S ́ersic
odel) and total mass model (using an SIE plus shear). The initial

tages of this pipeline fit the source using a parametric S ́ersic profile
nd perform the variance scaling described in Section 3.4.4 . 

(ii) Light pipeline. Uses fixed values of the mass and source 
arameters corresponding to the maximum-likelihood model of the 
ource pipeline. This is the first time the lens light is fitted for
imultaneously with a Voronoi mesh source instead of S ́ersic profile.
he lens mass is therefore again described by an SIE plus shear.
he only free parameters in this pipeline are those of a double
 ́ersic lens light model and ω Lens which controls the magnitude
f variance scaling. The maximum-likelihood lens light subtracted 
mage inferred by this pipeline is output for use by additional fits
nvestigating lens modelling systematics. 

(iii) Mass pipeline: Fits a PL, BPL, PL with multipoles, decom- 
osed mass model or PL with line-of-sight galaxies, which are all
ore complex than the SIE fitted previously. The lens light is fixed

o the maximum-likelihood model of the Light pipeline. 
(iv) Subhalo pipeline. Determines the increase in log Bayesian 

vidence when a DM subhalo is included in the lens model, which is
MNRAS 527, 10480–10506 (2024) 

escribed next in Section 3.7 . 

 https:// github.com/ rhayes777/ PyAutoFit

https://github.com/Jammy2211/autolens_workspace
https://github.com/rhayes777/PyAutoFit
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Table 1. Composition of the SLaM pipelines that make up our uniform analysis. The name of each pipeline phase is given in the second column in bold text. 
This is an adaptation and extension of the table presented by Etherington et al. ( 2022 ), who used the SLaM pipelines to fit HST imaging of strong lenses. 
After the phases SI 4 , LP 

1 , and MT 

1 the best-fitting model images (the � j and Łj ) are updated for the adaptiv e mesh, re gularization, and variance scaling 
features. Their associated parameters are refit via a standalone dynesty fit using a fixed lens model. 

Pipeline Phase 
Galaxy 

component Model Varied Prior info Phase description 

Source 
parametric 

SP 

1 Lens light S ́ersic + Exp � – Fit only the lens light model and subtract it from the 
data image. 

SP 

2 Lens mass SIE + shear � – Fit mass model and source light using lens subtracted 
image from SP 

1 . 
Source light S ́ersic � –

SP 

3 Lens light S ́ersic + Exp � – Refit the lens light model with default priors and fit the 
mass and source models with priors informed from SP 

2 . 

Lens mass SIE + shear � SP 

2 

Source light S ́ersic � SP 

2 

Source 
inversion 

SI 1 Lens light S ́ersic + Exp � SP 

3 Fix lens light and mass parameters from SP 

3 and fit 
magnification adaptive Voronoi mesh and constant 
regularization parameters. 

Lens mass SIE + shear � SP 

3 

Source light Voronoi magnification � –
SI 2 Lens light S ́ersic + Exp � SP 

3 Refine the lens mass model parameters, keeping lens 
light and source parameters fixed to those from previous 
phases. 

Lens mass SIE + shear � SP 

3 

Source light Voronoi magnification � SI 1 

SI 3 Lens light S ́ersic + Exp � SP 

3 Fit brightness adaptive Voronoi mesh and luminosity 
adaptiv e re gularization. Lens parameters fix ed from 

SP 

3 . 
Lens mass SIE + shear � SP 

3 

Source light Voronoi brightness � –
SI 4 Lens light S ́ersic + Exp � SP 

3 Refine lens mass model parameters using Voronoi 
Brightness grid. Fix lens light and source parameters to 
previous phases. 

Lens mass SIE + shear � SI 2 

Source light Voronoi brightness � SI 3 

Light 
parametric 

LP 

1 Lens light S ́ersic + S ́ersic � � Fit lens light parameters with broad uniform priors. 
Lens mass and source parameters fixed from SI 4 . 

Lens mass SIE + shear � SI 4 

Source light Voronoi brightness � SI 4 

Mass total MT 

1 Lens light S ́ersic + S ́ersic � LP 

1 Fit the lens mass parameters, with subset of priors 
informed from SI 4 . Lens and source light are fixed from 

LP 

1 and SI 4 . 

Lens mass See Section 4.7 � SI 4 

Source light Voronoi brightness � LP 

1 

Subhalo SH 

1 Lens light S ́ersic + S ́ersic � LP 

1 Fit the lens mass parameters, with priors informed from 

MT 

1 . Lens and source light are fixed from LP 

1 and SI 4 . 
Lens mass See Section 4.7 � MT 

1 

Source light Voronoi brightness � MT 

1 

SH 

2 Lens light S ́ersic + S ́ersic � LP 

1 Performs grid search of DM subhhaloes (see Section 
3.7 ). 

Lens mass See Section 4.7 + subhalo � MT 

1 

Source light Voronoi brightness � MT 

1 

SH 

3 Lens light S ́ersic + S ́ersic � LP 

1 Fits for DM subhalo using priors based on SH 

2 . 
Bayesian evidence compared to SH 

1 for DM subhalo 
inference. 

Lens mass See Section 4.7 + subhalo � MT 

1 

Source light Voronoi brightness � MT 

1 
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The SLaM pipelines use prior passing (see E22 ) to initialize
he regions of parameter space that dynesty will search in later
ynesty fits, based on the results of earlier fits. The priors of every
NRAS 527, 10480–10506 (2024) 
ens model fitted in this work can be found at https://github.com/
ammy2211/autolens subhalo . Priors are set up carefully to ensure
hey are sufficiently broad to not omit viable lens model solutions. 

https://github.com/Jammy2211/autolens_subhalo
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.7 Subhalo scanning 

ncluding a subhalo in the mass model produces a complex and 
ultimodal parameter space that a nested sampler like dynesty 
ay struggle to sample efficiently and robustly. We tested a model- 
tting approach which simply adds a subhalo to a lens model 
ssuming broad uniform priors on the subhalo’s image-plane position 
 x sub , y sub ) and mass M 

sub 
200 . Ho we ver, these fits did not al w ays reliably

nfer the subhalo’s input properties on simulated data sets. 
We instead perform a grid search of dynesty searches, where 

ach grid-search cell places uniform priors on the image plane ( x sub ,
 

sub ) position of the subhalo, spatially confining it to a small 2D
quare segment of the image plane. We perform 25 model fits
corresponding to a 5 × 5 grid in the image plane), where the size of
he box containing this grid is chosen via visual inspection of each
ens. An example subhalo scan is shown in Fig. 1 . This remo v es the
ultimodality in the parameter space created by the subhalo model, 

implifying it such that the global maxima solution in parameter 
pace is reliably inferred. For each grid cell, log uniform priors with
asses between 10 6 –10 12 M � are assumed for M 

sub 
200 . We al w ays

ssume the subhalo is at the same redshift as the lens galaxy (e.g.
ingle plane lensing). 

Once a grid search is complete, a final non-linear search is per-
ormed which provides accurate constraints on the subhalo mass M 

sub 
200 

nd image-plane coordinates ( x sub , y sub ). The subhalo centre’s priors
re set via prior passing, using the highest evidence model of the grid
earch (the lens model parameters also use this result). This prior
llows for a wider range of subhalo centres than the uniform priors
efining each 2D grid cell, but is centred on the highest evidence grid
earch model, ensuring dynesty sampling remains reliable. The 
ubhalo retains its log uniform prior on M 

sub 
200 with masses between 

0 6 –10 12 M �, to a v oid o v erly tight priors reducing the inferred error.
ynesty settings are adjusted to sample parameter space more 

horoughly at the expense of longer computational run-time. 
We quantify whether models including a subhalo are fa v oured 

sing the Bayesian evidence, Z , of the lens models with and without
 DM subhalo. The evidence is the integral of the likelihood over the
rior and therefore naturally includes a penalty term for including 
oo much complexity in a model. Z is inferred by dynesty (see
quation of Speagle 2020 ) and therefore available for every fit
erformed in this work. We define the log evidence difference in 
a v our of the lens model with a DM subhalo as 

 ln Z = ln Z sub − ln Z none , (18) 

here ln Z sub is the Bayesian evidence inferred by the fit after the
ubhalo scanning grid search and ln Z none is the evidence of the 
ens model without a subhalo before the grid search. Superscripts 
re added to � ln Z to denote model fits which make different
ssumptions, for example, � ln Z 

Base denotes the increase in log 
vidence for the baseline lens model with a subhalo assuming a PL
ass model, double S ́ersic lens light model and where the source is

econstructed on a Voronoi mesh. An increase of � ln Z = 4 . 5 for
ne model o v er another corresponds to odds of 90:1 in fa v our of that
odel; a 3 σ preference. An increase of � ln Z = 12 . 5 corresponds

o a 5 σ preference. Our criteria for a candidate subhalo detection 
s that we infer � ln Z > 10. The subhalo scanning analysis is the
ame as that used in He et al. ( 2023 ), who modelled strong lenses
imulated via cosmological simulations with PYAUTOLENS . 
 RESULTS  

e now present the results of subhalo scanning different data sets. In
ection 4.1, we give a concise summary of fits to simulated lens data
ets which are described fully in Appendix B . We use these results as
 starting point to investigate false positives DM subhalo detections 
ue to lens modelling systematics. 

.1 Subhalo scanning on simulated data 

n Appendix B , we simulate and fit a sample of 16 strong lenses,
n four groups of lenses with the same lens and source galaxies but
ith DM subhaloes of masses 10 10.5 , 10 10.0 , 10 9.5 M � or no subhalo.
he simulated lenses are idealized, because their lens light (double 
 ́ersic) and mass (PL plus shear) are simulated using the same model
ssumed to fit the data. Cautioning that these conclusions only hold
n this idealized scenario, a summary is as follows: 

(i) For 7 out of the 8 data sets containing a 10 10.5 or 10 10.0 M � DM
ubhalo the analysis successfully detects the DM subhalo. 

(ii) For 2 out of the 4 data sets containing a 10 9.5 M � DM subhalo
he analysis successfully detects the input DM subhalo. For the two
ata sets where the input DM subhalo is not detected we attribute
his to the data not being sensitive enough. 

(iii) For all four data sets not containing a DM subhalo, we
orrectly disfa v our a DM subhalo provided the source reconstruction
as sufficiently high resolution. 

(iv) Our subhalo inference does not depend on the source re- 
onstruction assumptions (e.g. it is insensitive to using a different 
egularization scheme). 

(v) The lens mass model is degenerate with the DM subhalo, 
hereby the inferred mass model changes its inferred parameters to 

absorb’ some of the DM subhalo signal. 

F alse positiv e DM subhalo detections were not seen for the
ock lenses (provided the source reconstruction was high enough 

esolution). This procedure therefore verifies that for our analysis 
f HST imaging of real lenses, false positives are because the lens
odel assumptions are not robust (or it is a geniune DM subhalo

etection). 

.2 Subhalo scanning on HST data with simple models 

e now present subhalo scanning of HST imaging of 54 strong lenses
rom the SLACS (Bolton et al. 2008 ) and BELLS-GALLERY (Shu
t al. 2016 ) samples. Results for each sample are given separately,
ecause the compact nature of BELLS-GALLERY sources changes 
heir sensitivity to DM subhaloes (Despali et al. 2022 ). We first
resent results for our simplest baseline lens model, which assumes 
wo S ́ersic profiles with the same centres for the lens light, a PL plus
xternal shear mass model and Voronoi mesh source reconstruction. 
ll fits adopt a 3.5 arcsec circular mask. 
Column 2 of Table 2 lists � ln Z 

Base , the log evidence increase for
 model including a subhalo for the 37 SLACS lenses. 14 out of 37
enses fa v our the inclusion of a DM subhalo and meet our criterion
f � ln Z 

Base > 10. Fig. 3 shows the corresponding subhalo grid
earch results for these objects, where from the top left rightwards
nd then downwards lenses are plotted in descending order of 
 ln Z 

Base . The lens SLACS2341 + 0000 infers the highest value,
 ln Z 

Base = 157 . 51. 24 lenses are non-detections with � ln Z 

Base <

0. Column 3 of Table 2 shows the inferred subhalo masses
 

sub 
200 M �, which span 10 8.39 and 10 11.98 M � for models where
 ln Z 

Base > 10. 
MNRAS 527, 10480–10506 (2024) 
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Figure 3. The subhalo scanning results of all SLACS lenses. Each scan uses a 5 × 5 grid of dynesty searches fitting a PL plus shear model with a subhalo 
whose ( x , y ) coordinates are confined to a 2D grid cell via uniform priors (see Section 3.7 ). Fits are shown in descending order of highest log evidence increase. 
The background images show the lens subtracted data, where the lens subtraction uses a double S ́ersic fit. In Section 4 , we demonstrate that the majority of 
these DM subhalo candidates are false positives. The coloured grid shows the increase of log evidences of each subhalo scan grid cell. The � ln Z 

Base values 
in each plot title correspond to the SH3 fit performed after the subhalo grid search where the subhalo position priors extend beyond a small 2D cell. This 
� ln Z 

Base value is sometimes much higher than the inferred grid search values and is why certain lenses show predominantly low log evidence increases but 
hav e high o v erall � ln Z 

Base values in the title (e.g. SLACS1432 + 6316). The star shows the DM subhalo’s maximum a posteriori inferred location for this 
fit. The colour bar ranges between 0 and 20 so that candidate DM subhaloes ( � ln Z 

Base > 10 are coloured distinctly from non-candidates). Certain lenses 
(e.g. SLACS1020 + 1122 on its left-hand side) show patches of noise, which are a result of emission from a foreground galaxy or star being remo v ed via the 
noise-scaling GUI described in Etherington et al. ( 2022 ). The lens SLACS1430 + 4105, shown in Fig. 1 , is omitted from this figure. 
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Column 2 of Table 3 lists � ln Z 

Base for all 16 BELLS-GALLERY
enses and Fig. 4 shows the corresponding subhalo scanning results. 
 out of 16 lenses meet our criterion of producing � ln Z 

Base > 10.
 our lenses giv e � ln Z 

Base > 100. Nine lenses are non-detections
ith � ln Z 

Base < 10. Table 3 also shows the inferred subhalo masses
 

sub 
200 , which again span 10 8.3 and 10 11.98 M � for models where
 ln Z 

Base > 10. 
c
.3 Subhalo scanning with different lens light subtraction 

o investigate whether an inaccurate lens light subtraction produces 
alse positives we fit lens light cleaned data sets. These are produced
sing a GUI which replaces the observed flux counts in the image
ata with Gaussian noise and increases the variances in all image
ixels which – from visual inspection – appear to predominately 
ontain lens light subtraction residuals. The pixels therefore do 
MNRAS 527, 10480–10506 (2024) 
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ot contribute to the likelihood function given by equation ( 17 ).
n example is shown in Fig. 5 . The log evidence increases by

ncluding a DM subhalo for fits using the lens light cleaned data
et is defined as � ln Z 

Light , which is compared to � ln Z 

Base to
solate the dependence on the lens light subtraction. 

The second and fourth columns of Table 2 show � ln Z 

Base and
 ln Z 

Light values for SLACS, where for nine lenses (ticks in column
ve) fitting the lens light cleaned data decreases � ln Z by more than
0 ( � ln Z 

Base − � ln Z 

Light > 10). This includes seven lenses which
witch from candidate DM subhaloes to non-detections, because
 ln Z 

Light < 10 and � ln Z 

Base > 10. Table 3 shows the same values
or BELLS-GALLERY, where for 5 lenses � ln Z decreases by more
han 10 and two lenses switch from fa v ouring a DM subhalo to not.
here are also three BELLS-GALLERY lenses where � ln Z 

Light >

0 and � ln Z 

Base < 10, meaning that fitting the lens light cleaned
ata means a DM subhalo is fa v oured when it was not for the baseline
odel. 
Fig. 6 shows the observed image (left column), lens subtracted im-

ge (left-centre column), normalized residuals (right-centre column),
nd source reconstructions (right column) of SLACS2341 + 0000,
or fits to the original data (top row) and lens light cleaned data
bottom row). This is the SLACS lens with the largest decrease of
 ln Z 

Light compared to � ln Z 

Base . There is evidence that the lens
alaxy has undergone a recent merger, with the residuals showing
idal stream features to the left, abo v e and right of the lensed
ource. The lens light subtraction also shows a central dipole feature
ndicating the galaxy has not yet dynamically settled post-merger.
he source reconstruction shown in the top right panel reconstructs

hese lens light features towards the left, top, and right of the source
lane. The bottom right panel shows these are not present in the
ource reconstruction of the lens light cleaned data, because the lens
ight residuals have been removed. The incorrect reconstruction of
ens light features is responsible for the large decrease in � ln Z 

Light .
Visual inspection of other lenses which show a large reduction in
 ln Z when fitting lens light cleaned data indicates similar residuals

re often present, which are therefore responsible for a DM subhalo
eing incorrectly fa v oured. Ho we v er, the y are typically not post-
erger features like in SLACS2341 + 0000 but fainter lens galaxy
orphological features like a central bulge or bar. 
There will also be a more a subtle interplay between the lens

ubtraction and lefto v er lensed source emission, which to some
egree will impact the DM subhalo inference. Ho we ver, this is not
esponsible for the large changes of � ln Z > 10 considered here.

e note also that variance scaling (see Section 3.4.4 ) was intended
o mitigate these false positives, but is clearly insufficient in many
enses. 

By removing lens light residuals via a GUI, this source of
M subhalo false positives is successfully mitig ated ag ainst. All

emaining systematic tests therefore fit data which has been treated
n this way. 

.4 Subhalo scanning with different source resolution 

o investigate whether insufficient resolution of the source recon-
truction leads to false positives we perform fits using source-only
asks. These masks retain only image pixels with significant lensed

ource emission, an example of which is shown in Fig. 5 . A GUI is
sed to mask the specific regions of the data which contain lensed
ource emission. All pixels outside of this custom mask are not ray-
raced to the source plane and therefore are not used to construct
he Voronoi mesh and reconstruct the source. This is in contrast
o the lens light cleaned data abo v e, which retained the 3.5 arcsec
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Figure 4. As Fig. 3 , but for the BELLS-GALLERY sample instead of SLACS. 

Figure 5. Illustration of the data augmentation schemes used to test for 
different systematics in the DM subhalo analysis, using the example lens 
SLACS1430 + 4105 (the image with the default 3.5 arcsec mask is shown in 
Fig. 1 ). The left panel illustrates lens light cleaned data, where image regions 
containing predominantly signal from the lens light have their signal replaced 
with Gaussian noise, and their corresponding variances increased to arbitrarily 
large values (meaning the pixels do not contribute to the likelihood). These 
image pixels are still ray traced to the source plane and reconstructed by the 
Voronoi mesh. Lens light cleaned data isolates whether lens light residuals 
are a systematic on the subhalo results (by comparing to fits using the default 
masks) and it uses evidence increases denoted � ln Z 

Light . The right panel 
illustrates a source-only mask where the remo v ed image pixels are not ray- 
traced to the source plane at all. The source reconstruction therefore dedicates 
more Voronoi cells to image pixels containing predominately the lensed 
source. Source-only masks isolate whether insufficient source resolution 
impacts the subhalo result (by comparing to fits using lens light-cleaned 
data) and evidence increases are denoted � ln Z 

Source . 
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ircular mask. The pixels outside the custom mask therefore also 
o not contribute to the χ2 given in equation ( 17 ). A Voronoi mesh
sing a source-only mask therefore dedicates a larger fraction of 
oronoi cells to reconstructing the source’s brighter central regions. 
he number of source pixels is also fixed to 2500, the upper limit
f the prior for previous fits using a circular mask. The log evidence
ncrease by including a DM subhalo for fits using a source-only mask
s defined as � ln Z 

Source , which is compared to � ln Z 

Light to isolate
he dependence on the source resolution. 
The fourth and sixth columns of Table 2 show the � ln Z 

Light and
 ln Z 

Source values for SLACS. For four lenses (ticks in column 7)
 higher resolution source model decreases � ln Z by more than 10
 � ln Z 

Light − � ln Z 

Source > 10). This includes three lenses which
o from candidate DM subhaloes to non-detections ( � ln Z 

Light > 10
nd � ln Z 

Source < 10). Table 3 shows the same values for BELLS-
ALLERY, where for five lenses � ln Z decreases by more than 10

nd none switch from DM subhalo candidates to non detections. The
ens BELLS1201 + 4743, marked with an asterix in column 6 of
able 3 , switches from a DM non-detection ( � ln Z 

Light < 10) to a
andidate DM subhalo ( � ln Z 

Source > 10). 
Fig. 7 shows the lens subtracted images and source reconstructions 

f SLACS0903 + 4116, a lens where � ln Z 

Light = 18 . 54 and
 ln Z 

Source = 3 . 83. The higher resolution source reconstruction
roduced using the source-only mask reconstructs more structure, 
mpro ving the o v erall lens analysis such that a DM subhalo is no
onger fa v oured. 

The DM subhalo results therefore depend on the source resolution. 
ll remaining systematic tests therefore use source-only masks. 

.5 Catastr ophic failur es 

efore considering results for different mass models, we high- 
ight four lenses where no mass model produces a satisfactory 
t: BELLS0755 + 3445, BELLS0918 + 5104, BELLS0029 + 2544, 
nd BELLS0201 + 3228. Fig. 8 shows the four lenses, where
he residuals exceed 6 σ in a large fraction of image-pixels con-
aining the lensed source’s emission. For the remaining 50 out 
f 54 lenses in our sample, the residuals of the lensed source
re within ∼3 σ . These four lenses are catastrophic failures –
he significant residuals indicate that none of the lens models 
tted in this work can attain a good quality of fit. We as-
ign them to the category X for catastrophic failure and discard
hem from subsequent sections (noting that a DM subhalo is 
a v oured in three of these lenses). Ritondale et al. ( 2019b ) discuss
ELLS0755 + 3445 as a lens where their fit produced significant

esiduals. 
MNRAS 527, 10480–10506 (2024) 
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M

Figure 6. How removing lens light subtraction residuals (by fitting lens light cleaned data) can remove DM subhalo candidates, illustrated using 
SLACS2341 + 0000. The images (from left to right) are the observed image, lens subtracted image, normalized residuals (after subtracting the lens and 
lensed source models from the data), and source reconstruction. The top row shows fits to the original data and bottom row the lens light cleaned data. For 
SLACS2341 + 0000, the top row shows that the double S ́ersic lens light subtraction leaves significant residuals in the centre and to the east, north, and west of 
the image, because of non-symmetric emission indicative of a post-merger. The source reconstruction (right panel) fits these lens light residuals, as it cannot 
distinguish lens and source emission. This is why a DM subhalo is incorrectly fa v oured. The lens light cleaned data remo v es these lens light residuals, such 
that the source reconstruction only reconstructs the source. The evidence for a DM subhalo in turn reduces significantly. In other lenses where a DM subhalo 
candidate is remo v ed by fitting the lens light cleaned data, similar residuals are seen if a double S ́ersic lens light model is used to subtract the lens light, but to a 
lesser degree. These are typically not due to post-merger features like in SLACS2341 + 0000, but other irregular morphological features (e.g a central bulge or 
disc-like structure). 

Figure 7. How making the source reconstruction higher resolution (by using a source-only mask) may remo v e a DM subhalo candidate, using the lens 
SLACS0903 + 4116. For this lens, the default 3.5 arcsec mask gives � ln Z 

Light = 15 . 35, whereas the source-only mask gives � ln Z 

SO = 3 . 91. Fits using the 
default 3.5 arcsec mask (left panels) and source-only mask (right panels) are sho wn, sho wing the lens subtracted image and Voronoi source mesh. Using a source 
only mask reconstructs the source using more Voronoi pixels, resolving source structure such that the lens model no longer fa v ours a DM subhalo. 
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.6 Overall subhalo scanning results 

sing source-only masks, we compare the DM subhalo inferences
fter fitting all five different mass models: the PL, BPL, PL with
ultipoles, decomposed mass model, and PL with line-of-sight

alaxies. Before comparing how different mass models change the
M subhalo inference, we first consider � ln Z 

Final , which is the the
ighest ln Z value inferred assuming any of the five mass models
ith a DM subhalo minus the highest ln Z value inferred for any
ass model without a DM subhalo. � ln Z 

Final is given in the second
ast column of Tables 2 and 3 . 

There are eight lenses which meet our criteria � ln Z 

Final > 10.
o we ver, we assign three of these lenses as non-detections, because
NRAS 527, 10480–10506 (2024) 
he y hav e line-of-sight galaxies or post-merger features visible in
heir residuals, suggesting the model fa v ouring a DM subhalo is
ikely spurious. These lenses have the category tag ‘ND/Los’ for
on-detection due to line-of-sight in the final column of Tables 2
nd 3 . We are therefore left with five DM subhalo candidates, which
re assigned the category ‘Cand’ for candidate and a total of 45
on-detections, which are assigned the category ‘ND’. 
A small subset of model fits do not produce a physically plausible

ens model, instead inferring the demagnified solutions described by
aresca, Dye & Li ( 2021 ). Their � ln Z values are omitted from the

esults and their corresponding results table entries have the entry
Demag’. This occurred for 11 fits in total: 8 out of 54 fits for the
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Figure 8. The four lenses which are catastrophic failures, based on their residuals exceeding of 3 σ outliers across many image pixels in two or more lensed 
source images. The lensed subtracted images and normalized residuals of each lens are shown (a normalized residual value indicates how much of a σ outlier 
the fit is). 

Table 4. In four lenses, the PL mass model fa v oured a DM subhalo b ut at 
least one of the three more complex mass models (BPL, PL with multipoles, 
decomposed mass model) did not. This table shows the inferred � ln Z values 
for the complex mass model minus � ln Z inferred for the simpler PL (both 
models without a subhalo). The values are inferred in the SH 

1 stage of the 
SLaM pipeline. Values of � ln Z > 10 indicate that the more complex mass 
model is fa v oured o v er the PL, which occurs for all four lenses. 

Lens name BPL 

PL with 
multipoles Decomposed 

SLACS1250 + 0523 31.84 
SLACS0959 + 0410 44.52 
SLACS1430 + 4105 4.56 15.69 
BELLS1110 + 3649 11.81 
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Figure 9. An attempt to visualize how making the lens mass model more 
complex may remove a DM subhalo candidate, illustrated using the lens 
SLACS1430 + 4105. The PL plus shear mass model gives � ln Z 

Source = 

13 . 40, compared to � ln Z 

Decomp = 6 . 54 for a decomposed mass model 
which models separately the stellar and dark components. Both panels show 

the observed image, including the critical curves of the PL plus shear mass 
model without a DM subhalo (inner ellipse), with a DM subhalo (outer 
ellipse), and the decomposed mass model without a DM subhalo (middle 
ellipse). The right panel zooms-in on the location where the PL plus shear 
model fa v ours a DM subhalo (cross). Including a DM subhalo or fitting a 
decomposed mass model expands the critical curves outwards in the same 
direction, albeit the decomposed model expands to a much lesser degree. 
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PL, 2 out of 54 fits for the PL with multipoles, and 1 out of 54 fits
or a decomposed mass model. 

.7 Subhalo scanning using different mass models 

e now consider what impact assuming a different mass model 
as. The log evidence increase for the BPL, PL with multipoles and
ecomposed mass models, including a DM subhalo, are denoted 
 ln Z 

BPL , � ln Z 

Multipole , and � ln Z 

Decomp , respectively. 
There are four lenses where a PL mass model fa v ours a DM

ubhalo ( � ln Z 

Source > 10) but at least one of the more complex
ass models does not and the final DM subhalo inference disfa v ours
 DM subhalo ( � ln Z 

Final < 10). This occurs in one lens for the
PL mass model ( � ln Z 

Source > 10 and � ln Z 

BPL < 10), in two
enses for the PL with internal multipoles ( � ln Z 

Source > 10 and
 ln Z 

Multipole < 10) and two lenses for the decomposed mass model
 � ln Z 

Source > 10 and � ln Z 

Decomp < 10). These values sum to five
ecause this occurs for two different mass models in the same lens. 
For these four lenses, Table 4 shows the Bayesian evidence 

ncrease of the more complex mass models compared to the simpler
L, before a DM subhalo is added to both. For all four lenses this
alue is abo v e 10, confirming that the more complex mass model fits
he lens better. The DM subhalo fa v oured in these four lenses when
ssuming a PL mass model were therefore false positive, which fitting
 more accurate lens mass model remo v ed. The y are labelled FP-PL,
or ‘false positive power law’, in the final column of Tables 2 and 3 .

We looked for a visual indicator to explain why the more complex
ass models remo v es the DM subhalo detection. Fig. 9 shows an at-

empt to do this using the lens SLACS1430 + 4105, where the simpler
L mass model fa v ours a DM subhalo ( � ln Z 

Source = 13 . 40) b ut the
ore complex decomposed model does not ( � ln Z 

Decomp = 6 . 54).
ig. 9 shows that the decomposed mass model infers a tangential
ritical curve (white line) which is slightly extended outwards 
MNRAS 527, 10480–10506 (2024) 



10494 J. W. Nightingale et al. 

M

Table 5. The inferred DM subhalo masses, log 10 [ M 

sub 
200 / M �], for the five 

lenses in the ‘Cand’ category. Masses are shown for the BPL, PL with 
multipoles, and decomposed mass models, which all include an external 
shear. Masses are shown for the models where a DM subhalo is fa v oured 
abo v e our criteria of � ln Z > 10. Errors quoted on log 10 [ M 

sub 
200 / M �] are at 

3 σ confidence. 

Lens name BPL 

PL with 
multipoles Decomposed 

SLACS0946 + 1006 8 . 62 + 2 . 15 
−2 . 54 10 . 37 + 0 . 80 

−0 . 51 10 . 37 + 0 . 80 
−0 . 51 

SLACS0029-0055 10 . 03 + 0 . 03 
−0 . 03 10 . 03 + 0 . 03 

−0 . 03 

SLACS1029 + 0420 9 . 05 + 2 . 57 
−3 . 04 

BELLS1226 + 5457 11 . 67 + 0 . 18 
−0 . 37 11 . 48 + 0 . 16 

−0 . 35 10 . 96 + 0 . 27 
−0 . 15 

BELLS1201 + 4743 11 . 23 + 0 . 12 
−0 . 20 
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ompared to the PL mass model (black line). When a DM subhalo is
ncluded with the PL (red line), the tangential critical curve extends
utwards in the same direction as the decomposed model, albeit to
 much larger degree. Adding a DM subhalo to the decomposed
odel has a negligible impact on the tangential critical curve (not

hown for visual clarity). Adding a DM subhalo to the simpler PL
odel and fitting a decomposed mass model (which is fa v oured

y the Bayesian evidence o v erall) therefore produce stretching of
he tangential critical curve in the same direction. They therefore
oth change the ray-tracing around the location the DM subhalo is
etected, possibly explaining why it produces a a false positive for
he PL, but it is certainly not conclusive. 

There are two lenses where the PL mass model disfa v oured a
M subhalo ( � ln Z 

Source < 10), but the decomposed mass model
a v oured one ( � ln Z 

Decomp > 10) and a DM subhalo was fa v oured
 v erall across all mass models ( � ln Z 

Final > 10). These lenses are
LACS0029 − 0055 and SLACS1029 + 0420 are both assigned as
andidate DM subhaloes and we discuss these lenses in detail in
ection 5 . 
There are eight lenses where the PL model disfa v oured a DM

ubhalo ( � ln Z 

Source < 10) but at least one of the more complex
ass models fa v oured one. Ho we ver, in these eight lenses, a DM

ubhalo was not fa v oured o v erall ( � ln Z 

Final < 10). This occurred
nce for the BPL, five times for the PL with internal multipoles and
our times for the decomposed mass model. For these lenses, the
L without a DM subhalo had higher values of ln Z than the more
omplex mass models with or without a DM subhalo. These eight
enses highlight that fitting a mass model which is too complex to be
ustified given the data quality may also produce false positive DM
ubhalo detections. 

The inferred DM subhalo masses for the candidate strong lenses
re given in Table 5 . 

.8 Line-of-sight galaxies 

e now consider whether including line-of-sight galaxies in the lens
odel changes the DM subhalo inference, by inspecting results for

he PL plus shear mass model with line-of-sight galaxies included
see Section 3.3.6 ). We first isolate all lenses where the PL with
ine-of-sight galaxies was fa v oured o v er all other mass models, by
nding those where their ln Z value is abo v e 10 any of the other
our mass models. There are three lenses where this is the case:
ELLS0113 + 0250, BELLS2342 − 0120, and BELLS1226 + 5457.
BELLS0113 + 0250 and BELLS2342 − 0120 are two of the lenses

hown in Fig. 2 , which were judged to have nearby line-of-sight
alaxies just outside the lensed source. For both lenses, including
NRAS 527, 10480–10506 (2024) 
ine-of-sight galaxies notably impacts the DM subhalo inference. For
ELLS2342 − 0120, the highest evidence mass model not including

ine-of-sight galaxies is the BPL. It gives ln Z = 4588 . 00 without
 DM subhalo and ln Z = 4601 . 19 with a DM subhalo, meaning
e would fa v our a DM subhalo. Ho we ver, the PL with line-of-

ight galaxies not including a DM subhalo has an even higher
vidence ( ln Z = 4601 . 68), meaning that we ultimately disfa v our
 DM subhalo. For BELLS0113 + 0250, ignoring the model with
ine of galaxies means we would infer � ln Z = 8 . 55, which reduces
o � ln Z = −0 . 17 when considering the model with line-of-sight
alaxies. 

There are nine lenses where � ln Z 

Los > 10, meaning that the PL
ith line-of-sight galaxies fa v ours a DM subhalo. Four of these lenses

re candidate subhaloes. Two lenses belong to the FP-PL category,
eaning the model fa v ouring a DM subhalo is likely a false positive

ue to the PL being too simple. The remaining three lenses are
xamples where fitting a mass model which is too complex to be
ustified given the data quality can give a spurious DM detection.
here are 42 lenses remaining where the inclusion of line-of-sight
alaxies had no impact on the DM subhalo inference. This includes
hree lenses in Fig. 2 , which were judged to have nearby line-of-sight
alaxies just outside the lensed source. 

 DI SCUSSI ON  

.1 Expected detections 

e now estimate upper limits on the number of expected DM
ubhalo detections for a � CDM Universe, via the sensitivity anal-
sis performed in Amorisco et al. ( 2022 ) and He et al. ( 2022 ).
sing PYAUTOLENS , these works simulated realizations of strong

ens images which included subhaloes, with varying image-plane
ositions and masses, and quantified how detectable they are. Both
orks assumed parametric (cored) S ́ersic sources, whereas this
ork uses Voronoi mesh source reconstructions. Using parametric

ources makes subhaloes more detectable, therefore the expectations
rovided by these sensitivity maps are upper limits and this work
hould detect fewer DM subhaloes in a CDM universe. We quote
alues from their work where the threshold for a detection is
onsistent with ours, a log Bayesian evidence difference of 10. 

We first consider what is the lowest detectable DM subhalo
ass our fits are sensitive to. Amorisco et al. ( 2022 ) find that

or HST -like data at a lensed source S/N (signal-to-noise ratio)
f ∼50 we are sensitive to DM subhaloes of at least 10 9.0 M �.
xtrapolations of forecasts in He et al. ( 2022 ) indicate that DM
ubhaloes of masses 10 9.0 M � are detectable. These are consistent
ith sensitivity mapping performed by Despali et al. ( 2022 ) using a
ifferent lens modelling code (for a threshold � ln Z = 10 . 0). The
owest detectable mass depends critically on the source S/N, and
or many lenses our source S/N is below 50, meaning their lowest
etectable mass will be abo v e 10 9.0 M �. Ho we ver, the majority of
etections listed in Tables 2 and 3 are abo v e masses of 10 10.0 M �.
he masses of the candidate DM subhaloes are therefore feasible for
ur HST data. 
We now consider upper limits on the expected number of de-

ections for subhaloes between masses of 10 10.0 and 10 11.0 M � in
 CDM universe. At higher masses, their reduced number counts
eans that the random chance of alignment drives the probability of

etection, as opposed to data quality. For a sample with lens redshift
 lens = 0.2 and source redshift z src = 0.6, Amorisco et al. ( 2022 )
redict that there should be 0.025 detections per lens for subhaloes
n the mass range 10 10–11 M � in the CDM case. For higher lens and
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ource redshifts, the expected number of detections rises up to 0.1. 
hey do not provide forecasts for masses above 10 11.0 M �, but the

arity of these objects means they would not significantly change 
xpectations. 

For the simple lens model fitted in Section 4.2 , which do not
ddress false positives due to the lens light and source resolution, if
e consider every candidate detection with an inferred mass above 
0 10 M � this gives a rate of 13 out of 37 or 0.351 detections per
ens for SLACS and 7 out of 16 or 0.4375 detections per lens for
ELLS-GALLERY. Systematic associated with the double S ́ersic 

ens light model, low-resolution source, and PL plus shear mass 
odel therefore led us to detect many more higher mass DM 

ubhaloes than expected in CDM. After improving the lens and 
ource models we were left with five DM subhalo candidates, a 
umber which does not exceed CDM expectations. 

.2 Are any DM subhalo candidates genuine? 

 key result of this paper is that changing the lens galaxy mass model
hanges the DM subhalo inference. For example, we identified 4 
ut of 54 lenses where a PL mass model produces a false positive
emo v ed by a more complex mass model (category ‘FP-PL’) and two
enses where a decomposed mass model fa v ours a DM subhalo when
ther models did not (category ‘Decomp’). Only 2 out of 54 lenses
a v oured a DM subhalo for all five mass models fitted. We cannot
scertain whether any DM subhalo candidate is genuine – even for 
hese two lenses, we cannot be certain whether another hypothetical 

ass model not fitted in this work would remo v e the DM subhalo
etection. 
To determine if they are genuine we must apply the technique 

sed in other studies (Koopmans 2005 ; Vegetti & Koopmans 2009 ;
itondale et al. 2019b ; Vernardos & Koopmans 2022 ), where free-

orm pixelized corrections are added to the lens’s gravitational 
otential. This confirms a DM subhalo candidate is genuine by 
equiring that these corrections reconstruct a local 2D o v erdensity 
n the lens’s convergence, that is consistent with the parametric DM 

ubhalo inferred via lens modelling. In many lenses, the corrections 
roduce global changes to the convergence, indicating that a DM 

ubhalo candidate is actually accounting for a systematic in the lens 
odel. Future work will assess our DM subhalo candidates using 

his technique. 
Whilst our study cannot determine if any DM subhalo candidates 

re genuine, by considering the DM subhalo inferences for different 
ass models we can gain insight on DM subhalo strong lens analysis.
e therefore now consider in detail the different assumptions made 

y the different mass models and relate this to how it changes our
M subhalo results. 

.3 Removing DM subhalo candidates with a more complex 
ass model 

e showed evidence of four lenses (see Table 4 ) where fitting a more
omplex mass model (either a PL with multipoles or decomposed 
ass model) did not fa v our a DM subhalo when the simpler PL
odel did. In all four lenses, the inferred Bayesian evidence for the
ore complex mass model was above that of the PL (both without
 DM subhalo) by o v er 10. These four lenses make up the category
P-PL for ‘false positive power law’. 
The cause of this behaviour is illustrated in He et al. ( 2023 ,

ereafter H23 ) using HST -like strong lens images simulated via a
igh-resolution zoom-in cosmological simulation (Richings et al. 
021 ) of a massive elliptical galaxy. H23 showed that a mismatch
etween the assumed lens mass model and the simulated lens galaxy’s 
ore complex underlying mass distribution could create a signal that 

esembles the perturbing effect of a DM subhalo. In certain simulated
atasets, where a DM subhalo was not truly present, the lens model
a v oured a DM subhalo with an increase of log evidence of up to
0. The PL fa v oured a DM subhalo for all five lenses in the FP-PL
ategory with � ln Z 

Source � 30 or less. 
Two of these lenses, SLACS1250 − 0523 and 

LACS1430 + 4105, were in the sample of three lenses 
tudied by Nightingale et al. ( 2019 ). The authors showed that
he stellar mass distribution of both lenses are composed of two
lliptical components with unique axis ratios and position angles. 
hen the authors fitted an SIE mass model to SLACS1430 + 4105

ts inferred position angle went to a value between those inferred
or each S ́ersic. They argued that the SIE model therefore adjusted
ts orientation to try and capture the lens’s true complexity, which is
aptured by the decomposed mass model. Their study supports the 
rgument that these two lenses have the type of complex features in
heir mass distribution which H23 showed cause false positive DM 

ubhalo detections. Work by Vegetti et al. ( 2014 ) also did not fa v our
 DM subhalo in SLACS1430 + 4105, supporting the false positive
nterpretation. 

Fitting more complex mass models can therefore remo v e false
ositives by adding complexity that is present in the lens’s true mass
istribution. Therefore, in 4 out of 54 lenses, or 7.4 per cent of
ur sample, the PL mass model produces false positive DM subhalo
etections. Amongst these four lenses, the BPL remo v es one false
ositive, the PL plus multipoles removes two and the decomposed 
ass model remo v es two. 

.4 Creating DM subhalo candidates with a decomposed mass 
odel 

n Appendix B , we showed that the PL lens mass model ‘absorbed’
enuine DM subhalo signals by adjusting the inferred mass model 
arameters away from their true input values. For the decomposed 
ass model, the centres, axis ratios, and position angles of the two
 ́ersic components representing the decomposed model’s stellar mass 
re tied to that of the lens galaxy’s light (each S ́ersic component has
ass-to-light ratio and gradient parameters that are free to vary). 
he restrictions this puts on the lens’s 2D stellar mass distribution

herefore may reduce this subhalo absorption effect and make DM 

ubhaloes not detected with the PL model detectable. 
This is a plausible interpretation of the results for the lenses

LACS0029 − 0055 and SLACS1029 + 0420, where a PL mass 
odel did not fa v our a DM subhalo b ut the decomposed mass
odel did, with values of � ln Z 

Final = 23 . 69 and 10 . 57, respectively.
o we ver, we cannot be certain that the linking of light to mass in the
ecomposed mass model is a robust assumption. The decomposed 
ass model could be creating a false positive due to some form

f missing complexity, in a similar fashion seen for the four lenses
iscussed abo v e. Fitting a decomposed mass model, which better
aptures the lens’s true mass distribution, may therefore make DM 

ubhaloes detectable which are not detectable when fitting other lens 
ass models. Future work will test this hypothesis by applying the

otential corrections described in Section 5.2 to these two lenses. 

.5 What mass model complexity is missing? 

he FP-PL category consists of four lenses where a DM subhalo
 as f a v oured for the PL model and disfa v oured for the PL with
ultipoles or decomposed mass model, and the latter had a higher
MNRAS 527, 10480–10506 (2024) 
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 v erall evidence. When comparing to the BPL instead of the PL,
he results do not change for any of these lenses. The multipoles and
ecomposed mass models are therefore adding a form of complexity,
ot present in the PL or BPL, which remo v es DM subhalo candidates.
hese models add complexity to the mass distribution’s angular
tructure, for example, allowing azimuthal variations in the projected
ensity that vary with radius. In contrast, the BPL only adds freedom
adially. This is evidence that it is missing complexity in the angular
tructure of lens mass models which creates false positives DM
ubhalo candidates. This is consistent with H23 and is discussed by
ochanek ( 2021 ) in the context of measuring the Hubble Constant
ith strong lenses. 
Of these four lenses, there are two where the PL with multipoles

hanged the DM inference and two where it was the decomposed
ass model. The PL with multipoles and decomposed mass models

herefore do not al w ays give consistent DM subhalo results, because
hey add angular structure to the mass distribution in different ways.
he fourth order multipole fitted in this work adds boxiness/disciness

o the mass distribution (Van De Vyvere et al. 2022b ), whereas the
ecomposed mass model allows for mass twists and departures from
 single axis ratio (Nightingale et al. 2019 ). 

Studies of local massive elliptical galaxies have revealed a di-
ersity of complex structures, including kinematically distinct cores
Krajnovi ́c et al. 2011 ), boxy/discy isophotes (Emsellem et al. 2011 ),
sophotal twists, and centre shifts (Goullaud et al. 2018 ). Recent
orks hav e inv estigated what impact these have on lens models (Cao

t al. 2021 ; Van De Vyvere et al. 2022a , b ; Etherington et al. 2023b ).
dge-on discs have also been shown to cause false positive DM
ignals (Hsueh et al. 2016 , 2017 , 2018 ). These forms of complexity
dd smoothly changing radial and azimuthal features to the mass
istribution, which the BPL, PL with multipoles, and decomposed
odels add in different ways. 
Our results moti v ate the de v elopment of more comple x mass
odels that add azimuthal freedom (and to a lesser degree, radial

reedom) in a way that captures the true complexity of all lens
alaxies. Ho we ver, it is unclear ho w. Ev aluating a mass model’s
eflection angles typically relies on it conforming to elliptical
ymmetry (e.g. that all iso-convergence contours correspond to a
ingle position angle and axis ratio). Even if we are able to determine
hat complexity is missing from the mass model, it remains to be

een whether one can practically fit it as a parametrized lens mass
odel. Future work will build-on the results of this study in order to

etter understand what mass model complexity is missing. 

.6 Potential corrections 

he potential corrections technique (Koopmans 2005 ; Vegetti &
oopmans 2009 ; Suyu et al. 2010 ; Vernardos & Koopmans 2022 )
an provide key insight on the missing mass model complexity
Powell et al. 2022 ). Performing the potential corrections analysis
see Section 5.2 ) for different mass models and comparing the results
ill facilitate progress, because the complexity included and omitted

hould be reflected in the potential corrections themselves. 
This raises an important question, how well do the potential

orrections perform in a regime where a DM subhalo is present,
ut there is also missing complexity in the lens mass model? In
his scenario, the lensing signal produced by a DM subhalo will be
uperimposed with the signal produced by missing complexity in the
ens mass model. Would the potential corrections reproduce the local
M subhalo signal and simultaneously correct the mass model on a
lobal scale, or would a degenerate solution be inferred such that the
M subhalo is rejected? This scenario is considered by Galan et al.
NRAS 527, 10480–10506 (2024) 
 2022 ) who use wavelets to perform a multiscale potential correction
n simulated lenses. Their analysis indicates the signals are separable
ecause they operate on different physical scales. 

.7 What about line-of-sight galaxies? 

here are two lenses where including line-of-sight galaxies had a
eaningful impact on the DM subhalo inference, both of which

ad bright galaxies within ∼1.0 arcsec of the lensed source. There
re three more lenses which had bright galaxies this close, but
heir inclusion did not change the DM subhalo inference. For the
emaining 49 lenses, models including line-of-sight galaxies were
tted, but these objects were typically ∼3.0 arcsec or more from

he lens and relativ ely faint. Pro vided line-of-sight galaxies are
ufficiently far from the lens they therefore do not impact the DM
ubhalo inference, at least for HST quality data. Future work could
uantify this more precisely, by estimating the masses of the line-of-
ight galaxies from their luminous emission. 

.8 Subhalo masses 

23 show that an o v erly simplistic mass model can lead to o v eresti-
ates of M 

sub 
200 by a factor of ∼4. Given the uncertainty surrounding

hether our DM subhalo candidates are genuine, interpreting their
nferred masses, which are given in T able 5 , is difficult. W e therefore
ocus on SLACS0946 + 1006, a confirmed DM subhalo (Vegetti
t al. 2010 ), which passed our detection criteria for all mass models
category A). Our 3 σ confidence intervals for M 

sub 
200 – with each of

he different lens mass models (which all include an external shear)
are: 

(i) PL: M 

sub 
200 = 1 . 00 + 0 . 32 

−0 . 25 × 10 11 M �, 
(ii) BPL: M 

sub 
200 = 3 . 42 + 2 . 61 

−1 . 93 × 10 11 M �, 
(iii) PL with multipoles: M 

sub 
200 = 2 . 51 + 1 . 71 

−1 . 1 × 10 11 M �, 
(iv) Decomposed mass model: M 

sub 
200 = 0 . 85 + 0 . 87 

−0 . 59 × 10 11 M �, 
(v) PL with line-of-sight galaxies: M 

sub 
200 = 2 . 53 + 3 . 72 

−1 . 77 × 10 11 M �. 

The M 

sub 
200 estimates therefore vary depending on the mass model,

ith the BPL value inconsistent with the PL. We anticipate that
ttempts to constrain more subtle DM properties like the subhalo’s
oncentration will be more impacted by this de generac y with the
ens mass model (Minor et al. 2021b ). Understanding the missing
omplexity in strong lens mass models is important for ensuring that
M subhalo mass measurements are accurate. 
Even if our mass models were perfect, the mass estimates quoted

n this work for any genuine DM subhalo have additional potential
ystematics. Our DM subhalo model assumes they lie on the mass-
oncentration relation from Ludlow et al. ( 2016 ) and we will
 v erestimate the mass of any genuine DM subhalo which is more
oncentrated than this relation (because more concentrated NFW
aloes have a higher central density, making their perturbations to
he lensing more prominent, see Amorisco et al. 2022 ). This is also
hown by Minor et al. ( 2021a , b ). DM subhaloes may also be at a
ifferent redshift to the lens, which can also lead to an incorrect mass
stimate (Li et al. 2017 ; Despali et al. 2018 , 2022 ; Amorisco et al.
022 ; He et al. 2022 ). 

.9 Improving other aspects of lens models 

he evidence fa v ouring a DM subhalo decreased by more than 10
hen: (i) residuals from an inadequate lens light subtraction were

emo v ed in 12 out of 54 lenses; and (ii) the source reconstruction
esolution was increased in 7 out of 54 lenses. We identified this
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y refitting each lens with simple changes to the imaging data and
asks, similar to those used by other studies (Vegetti et al. 2014 ;
itondale et al. 2019b ). Improving PYAUTOLENS to mitigate these 

ystematics is also straightforward, for example, using more flexible 
ens light models (e.g. basis functions; Tagore & Jackson 2016 ) and
ptimizing the code to reconstruct sources at higher resolution. 

.10 Comparison with other works 

e now compare to studies by Vegetti et al. ( 2010 , 2014 ) and
itondale et al. ( 2019b ) who search for subhaloes in the SLACS
nd BELLS-GALLERY samples. These works use lens light sub- 
racted images, source-only masks, and a PL mass model, thus our 
 ln Z 

Source values are the most suitable to compare. In certain lenses
hese studies include line-of-sight galaxies, meaning that we compare 
 ln Z 

Los values. 
Vegetti et al. ( 2010 ) present the detection of a DM subhalo

n the lens system SLACS0946 + 1006, for which we infer
 ln Z 

Source = 72 . 36 and assign it as a DM subhalo candidate. Our
nferred values of ( x , y ) = ( − 1.22, −1.28) are consistent with the
alues presented in Vegetti et al. ( 2010 ). Comparing subhalo mass is
ess straightforward, because Vegetti et al. ( 2010 ) assume a pseudo-
affe density profile whereas we assume an NFW. The pseudo-Jaffe 
arametrization is more centrally dense than the NFW, such that a 
actor of ∼10 difference is expected between their inferred masses 
Vegetti et al. 2018 ). The mass of M 

sub 
200 = 1 . 00 + 0 . 32 

−0 . 25 × 10 11 M � for
ur NFW subhalo model is therefore qualitatively above what one 
ould have predicted by converting their pseudo-Jaffe inferred value 
f 3.51 × 10 9 M � to an NFW. Our results therefore agree with Vegetti
t al. ( 2010 ). 

Vegetti et al. ( 2014 ) analyse the following 11 SLACS lenses:
LA CS0252 + 0039, SLA CS0737 + 3216, SLA CS0956 + 5100,
LA CS0959 + 4416, SLA CS1023 + 4230, SLA CS1205 + 4910,
LA CS1430 + 4105, SLA CS1627 − 0053, SLACS2238 − 0754, and 
LACS2300 + 0022. They report no DM substructure detection for 
very system. All of these lenses are in our SLACS sample except
LACSJ0959 + 4416, which we remo v ed due to a poor lens light
ubtraction. Our highest � ln Z 

Source value for a lens in common with
his sample (omitting SLACS0946 + 1006) is SLACS0956 + 5100 
ith a value of � ln Z 

Source = 23 . 35. We infer � ln Z 

Source > 10 for
ne more shared lens, SLACS1430 + 4105. To claim a DM subhalo
etection, Vegetti et al. ( 2014 ) require that the Bayesian evidence
ncreases by 50. Therefore, for all 10 o v erlapping lenses we are in
greement. 

Ritondale et al. ( 2019b ) analyse 17 lenses from the BELLS-
ALLERY sample, of which 16 are shared with our sample (we re-
o v ed a system with two lens galaxies). In three lenses they find that

he addition of a subhalo in the lens model increases the Bayesian ev-
dence by more than 100; BELLS0742 + 3341, BELLS0755 + 3445, 
nd BELLS1110 + 3649. For these three lenses, we infer � ln Z 

Source 

alues of −3.59, 1268.78, and 12.65, respectively. We attribute 
ELLS0755 + 3445 as a catastrophic failure and Ritondale et al. 
 2019b ) specifically discuss this as a lens with an inaccurate
ass model that causes a spurious DM subhalo inference. We 
nd � ln Z 

Source > 100 . 0 in three more lenses which we class
s catastrophic failures, BELLS0918 + 5104, BELLS0029 + 2544, 
nd BELLS0201 + 32284, which are not mentioned specifically by 
itondale et al. ( 2019b ). In the lens BELLS1226 + 5457, we infer
 ln Z 

Source = 105 . 90, which is reported below 100 in Ritondale
t al. ( 2019b ). 

There are differences between our results and those of Ritondale 
t al. ( 2019b ). Assessing the cause for discrepancy is difficult.
ELLS-GALLERY source galaxies are compact Lyman- α emitters 
Shu et al. 2016 ; Ritondale et al. 2019a ) which for fits to simulated
enses with similar source properties highlighted the need for higher 
ource resolution (see Appendix B4 ). Therefore the differences 
re likely due to how each work approaches the source analysis.
lthough PYAUTOLENS and the method of Ritondale et al. ( 2019b )

re similar, there are differences in their implementation and the 
egularization schemes that are applied. More detailed study is 
arranted, especially in light of the systematics highlighted by 
therington et al. ( 2022 ) where stochasticity in the construction of

he source can produce large spikes in the log likelihood. 

 SUMMARY  

n this work, we scan for DM subhaloes in 54 strong lenses imaged by
he HST : twice as many as have been previously attempted (Vegetti
t al. 2014 ; Ritondale et al. 2019b ). To achieve this, we successfully
eveloped a predominantly automated data processing pipeline, 
ased on open-source lens modelling software PYAUTOLENS . By 
omparing lens models with and without DM subhaloes, we infer 
he probability that each lens contains a DM substructure. Tested 
n idealized mock HST images of 16 lenses, our method correctly
dentifies DM substructures of mass > 10 9.5 M � (the expected sen-
itivity of HST , Amorisco et al. 2022 ; Despali et al. 2022 ; He
t al. 2022 ) without false positiv es, pro vided that the source galaxy
econstruction has sufficiently high resolution. 

We identify five DM subhalo candidates, including one previously 
dentified in the lens SLACS0946 + 1006 (Vegetti et al. 2010 ). For
wo candidates fits using simpler models for the lens’s mass did
ot fa v our a DM subhalo, b ut more complex mass models which
se separate components for the stars and DM do. Future work will
xtend these fits using a pixel-grid-based technique for the lens’s 
ravitational potential (Koopmans 2005 ; Vegetti & Koopmans 2009 ), 
n order to definitively determine whether any of these candidates 
re genuine DM subhalo detections. We identify a total of 45 non-
etections, which are vital for o v ercoming Poisson statistics when
onstraining DM models (Despali et al. 2022 ). 

We demonstrate that changing the complexity of the lens galaxy’s 
ass model has a dramatic impact on the DM subhalo inference.
ecause our software is highly automated, we have been able to fit
ve different parametric forms for the lens’s mass which are used in

he literature: (i) PL (Tessore & Metcalf 2015 ); (ii) BPL (O’Riordan
t al. 2019 , 2020 , 2021 ); (iii) PL including internal multipoles (Chu
t al. 2013 ); (iv) decomposition of the lens into stellar and dark
omponents (Nightingale et al. 2019 ) and; (v) a PL where the mass
f nearby line-of-sight galaxies is also accounted for. An external 
hear term is included in all models. 

We demonstrate that fits assuming a more complex model for the
ens’s mass distribution may: (i) favour the inclusion of a DM subhalo
hen fits assuming a simpler lens mass model do not (2 out of 54

enses) and; (ii) remo v e false positiv e DM subhalo detections found
hen assuming a simpler lens mass model (6 out of 54 lenses). The

nferred DM subhalo masses also depend on the mass model that we
ssume. 

We believe that the main form of complexity missing in our lens
ass models was in their azimuthal structure, and that effort must be

laced on developing lens models that add this. If done correctly, the
ay-off could be huge – enabling studies that are more sensitive to
M subhaloes of lower masses than previously forecasted and which 

re devoid of false positive detections. 
The importance of automating strong lensing analysis will increase 

n future surv e ys. Sev eral hundred lenses will be required for
MNRAS 527, 10480–10506 (2024) 
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ompetitive constraints on DM physics (Vegetti et al. 2018 ; Amorisco
t al. 2022 ; Despali et al. 2022 ; He et al. 2022 ); and thousands (or
ens of thousands) of lenses will soon be disco v ered by the James
 ebb Space T elescope , Euclid , and Roman Space T elescopes (Collett

015 ). These exquisite data sets and large lens samples will allow us
o test � CDM on smaller scales of the Universe than ever before. 

OFTWARE  C I TAT I O N S  

his work uses the following software packages: 

(i) PYAUTOFIT (Nightingale et al. 2021b ). 
(ii) PYAUTOGALAXY (Nightingale et al. 2023a ). 
(iii) PYAUTOLENS (Nightingale & Dye 2015 ; Nightingale et al.

018 , 2021b ). 
(iv) ASTROPY (Astropy Collaboration 2013 ; Price-Whelan et al.

018 ). 
(v) COLOSSUS (Diemer 2018 ). 
(vi) CORNER.PY (F oreman-Macke y 2016 ). 
(vii) DYNESTY (Speagle 2020 ). 
(viii) MATPLOTLIB (Hunter 2007 ). 
(ix) NUMBA (Lam, Pitrou & Seibert 2015 ). 
(x) NUMPY (van der Walt, Colbert & Varoquaux 2011 ). 
(xi) PYTHON (Van Rossum & Drake 2009 ). 
(xii) SCIKIT-IMAGE (Van der Walt et al. 2014 ). 
(xiii) SCIKIT-LEARN (Pedregosa et al. 2011 ). 
(xiv) SCIPY (Virtanen et al. 2020 ). 
(xv) SQLITE (Hipp 2020 ). 
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PPEN D IX  A :  R E G U L A R I Z AT I O N  FORMALI SM  

he linear regularization matrix H used in Warren & Dye (2003 ) and
ightingale & Dye ( 2015 ) is deri ved follo wing the formalism given

n Seiler & Seiler ( 1989 ), where H = B 

T B and the matrix B stores the
egularization pattern of source pixels with one another. For example, 
o regularize a source pixel with its neighbour, assuming that pixel 
ne is a neighbour of pixel two, and two of three, etc., the matrix B x 
s given as 

 

 

 

 

−1 1 0 0 ... 
0 −1 1 0 ... 
0 0 −1 1 ... 
... ... ... ... ... 

⎤ 

⎥ ⎥ ⎦ 

. (A1) 

or gradient regularization on an N × N square grid, this matrix
ives the regularization of source pixels across the x -direction, 
here every N elements will be a row of zeros. This matrix then
iv es a re gularization matrix H x = B x 

T B x . F or re gularization in
he y -direction, a second B y matrix is generated, where the values
f ne gativ e one are again across the diagonal and the values of
ositive ones are every N elements across from this, with the final N
ows all zeros. B y is then used to compute a second regularization
atrix H y = B y 

T B y , which is added to the first to give the overall
egularization matrix H = H x + H y . Gradient regularization used 
n this work follows the same pattern, but computes around 5–10
 matrices corresponding to regularization across all neighbouring 
oronoi v erte x indices. 
DM subhalo results use a scheme which adapts the degree of

moothing to the reconstructed source’s luminous emission. First, an 
stimate of the flux that will be reconstructed by each Voronoi cell
s computed using a previous model of the lensed source emission,
 j , as 

 i = 

∑ K 

k= 1 w � Src , k 

K 

, (A2) 

here the summation is o v er the K image pixels allocated to each
oronoi source pixel and w is given by equation ( 13 ). Each element

n � v is divided by K to normalize for the number of allocated image
ixels, thereby ensuring that the source pixels which (by chance) are
llocated more image pixels do not receive a higher value of v i than
hose which are allocated fewer. The vector � V is then computed, 
here each element is given by 

 i = 

[
v i 

v max 

]L Lum 

. (A3) 

ach element is divided by the maximum value of � v to scale
ll values between zero and one and raised to the power of the
yperparameter L Lum 

. � V is then used to compute the luminosity- 
eighted regularization value of each source pixel as 

 i = λSrc V i + λBG (1 − V i ) , (A4) 

herefore leading to two regularization coefficients λSrc and λBG , 
hich are both free parameters. 
To perform luminosity-weighted regularization, the 1D vector of 

egularization coefficients � � (see equation A4 ) is folded into the 
omputation of H . The � B matrices abo v e are redefined to include
ach pixel’s ef fecti ve regularization coefficient, λeff , as B � 

= 

� � B ,
here � � is given by equation ( A4 ). The corresponding regularization
atrix is then H � 

= B 

T 
� 

B � 

. 
We use the PYAUTOLENS regularization scheme Adaptive- 
rightnessSplit . This scheme also regularizes the source pixel 
alues by interpolating values at a cross of surrounding points, which
epends on the size of each source pixel and is independent of
he number of connecting neighbours between source pixels, which 
an be unstable. Explicitly, the regularization term of the Adap- 
iveBrightnessSplit is given by (following the expression 
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f Warren & Dye 2003 ) 

 L = 

J ∑ 

j= 1 

{ [s j − ˜ s 
(
x j + l j , y j + l j 

)]2 

+ 

[
s j − ˜ s 

(
x j − l j , y j + l j 

)]2 

+ 

[
s j − ˜ s 

(
x j + l j , y j − l j 

)]2 

+ 

[
s j − ˜ s 

(
x j − l j , y j − l j 

)]2 } , (A5) 

here s j is the value of the source pixel j (at position ( x j , y j )). ̃  s ( x , y )
s the natural neighbour interpolating function given by { s j } J j= 0 . l j is
he Voronoi ‘length’ of the j th source pixel which is defined as the
quare root of the area of j th source pixel (Voronoi cell), A j . With the
xpression of G L , the regularization matrix H is then derived as (see
q. 13 of Warren & Dye 2003 ) 

 i,j = 

1 

2 

∂ G L 

∂ s i ∂ s j 
. (A6) 

his regularization scheme is similar to what is used in the work
f Vegetti & Koopmans ( 2009 ). The difference is that Vegetti &
oopmans ( 2009 ) compute the difference between the value at
 Delaunay v erte x and the (barycentrically) interpolated values
t associated intersecting points of horizontal (vertical) lines and
elaunay edges, while here we compute the value at a Voronoi
 erte x and the (natural neighbouring) interpolated values at positions
eparated by the associated Voronoi ‘length’. 

PPENDIX  B:  SIMULATED  DATA  RESULTS  

1 Simulations 

e test our lens modelling and subhalo scanning pipelines on a
ample of 16 simulated lenses. For every lens we assume a lens
alaxy and subhalo (when included) at z = 0.5, and a source
t z = 1.0. Each lens galaxy is simulated using two centrally
ligned S ́ersic profiles and a PL mass profile. Sources are simulated
sing either a single S ́ersic profile or a superposition of between
 and 6 elliptical (Elson, Fall & Freeman 1987 , hereafter EFF )
rofiles, 

 EFF ( ξ ) = I c (1 + r 2 /r 2 c ) 
−η, (B1) 

here r c is a scale factor that relates the profile to the circular
alf light radius and η controls the intensity gradient of the profile.
he EFF profile is used by Cornachione et al. ( 2018 ) to model the
ELLS-GALLERY source galaxies, and we adopt parameter values

epresentative of their results. We assume η = 1.5 for all simulated
ources. 

We simulate four baseline models of lens light, lens mass, and
ource light (see Tables B1 and B2 ). The same mass model is used
o simulate lenses one and three, which forms a nearly complete
instein ring but with either a single S ́ersic source or six EFF profiles.
or each lens, we create four mock images with subhaloes of mass
0 10.5 , 10 10.0 , and 10 9.5 M � or where the subhalo is omitted. The
 x sub , y sub ) coordinates of each subhalo are chosen to be near or
n top of the lensed source’s emission, to ensure they perturb the
ource’s emission significantly enough to be detectable and thus able
o test our subhalo scanning analysis. 

The four images including a 10 10.5 M � subhalo are shown in
ig. B1 , where the subhalo locations are shown by a black star.
ach simulated image has a resolution and S/N representative of the
ST imaging of strong lenses we fit in this work. For Lens 1 and Lens 2 

which assume a single S ́ersic source) we assume a pixel scale of
NRAS 527, 10480–10506 (2024) 
.05 arcsec. For Lens 3 and Lens 4 (which assume EFF profiles for the
ource) we assume 0.04 arcsec. These pixel scales are the resolution
f the SLACS and BELLS-GALLER Y HST images, respectively . To
reate the images of the lens and source emission an iterative grid
s used. This first e v aluates each light profile (including ray-tracing
f it is in the source plane) at the centre of each image pixel. It
hen e v aluates the profiles using higher resolution subgrids within
ach image pixel, in increments of 11 × 11, 21 × 21, 31 × 31,
p to 301 × 301. A pixel intensity is computed until it reaches
 fractional accuracy of 99.9999 per cent compared to the value
omputed using the previous subgrid. This image has a uniform
ackground sky added to it, is blurred with a Gaussian PSF with σ =
.05 arcsec, has Poisson noise added, and then the input background
ky subtracted. 

This mock sample is idealized, in that the same lens light model
a double S ́ersic) and mass model (a PL plus shear) used to simulate
ach lens is assumed when we fit it. The primary purpose of this
 x ercise is to build confidence that our method does not produce
alse positives in this idealized setup, and determine to what masses
t can accurately reco v er input DM subhaloes. 

2 Results 

his section presents the results of fitting the 16 simulated lenses with
ur subhalo scanning pipeline. We perform two independent fits to
very lens using a Voronoi mesh with the default 3.5 arcsec circular
ask and an annular mask, where the outer and inner radii are chosen

o be small whilst still containing all lensed source emission and the
ens light subtraction is fixed to the maximum-likelihood lens light

odel inferred using a circular mask. Table B3 shows the inferred
 ln Z v alues for e very lens, and the inferred subhalo locations and
asses for the annular mask fits, with errors quoted at 3 σ confidence

ntervals. 
We begin with the subhalo scanning results for the four simulated

enses which do not contain a DM subhalo, to verify that our analysis
oes not produce false positives. The 1st, 5th, 9th, and 13th rows of
able B3 show the inferred � ln Z values for each fit. For Lens 1 ,
ens 2 , and Lens 3 fits using either a circular or annular mask produce
 ln Z 

Base < 10 . 0 and therefore correctly do not fa v our the inclusion
f a DM subhalo in the lens model. Ho we ver, for Lens 4 , the subhalo
can using the 3.5 arcsec circular mask infers � ln Z 

Base = 15 . 25,
ncorrectly fa v ouring a DM subhalo even though one is not present in
he data. The corresponding annular mask result infers � ln Z 

Vor =
 . 34, which is correctly below 10. Complex and compact sources
similar to those in BELLS-GALLERY) therefore may produce false
ositives when there is insufficient resolution in the source mesh to
esolve it. In the main paper, fits are therefore performed to the HST
ata using source-only masks which dedicate higher resolution to the
ource reconstruction (annular masks are not used in the main paper
ue to lens light residuals requiring a more bespoke masking scheme
o remo v e them). F or the simulated lens results, we discuss hereafter
nly fits using annular masks. 
The � ln Z values for the 12 other lenses which include subhaloes

f mass 10 9.5 , 10 10.0 , or 10 10.5 M � are also shown in Table B3 .
ig. B2 shows their corresponding 5 × 5 subhalo grid searches
or the Voronoi mesh with an annular mask. For all four lenses in our
ample including a 10 10.5 M � subhalo, a model including a subhalo
s fa v oured, with � ln Z 

Base values of 186.58, 15.3, 638.2, and
9.54. Three 10 10.0 M � subhaloes are also reco v ered with � ln Z 

Base 

alues of 39.89, 7.57, 108.11, and 18.24. The 10 9.5 M � subhaloes are
eco v ered in Lens 1 and Lens 3 with � ln Z 

Base values of 17.67 and
3.75. Provided the detection criteria of � ln Z > 10 . 0 is met, the
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Table B1. The parameters of the mass models of the simulated lenses. 

Lens name 
x mass 

(arcsec) 
y mass 

(arcsec) εmass 
1 εmass 

2 

θmass 
Ein 

(arcsec) γ mass γ ext 
1 γ ext 

2 x sub (arcsec) y sub (arcsec) 

Lens 1 0 .0 0 .0 − 0 .023 0 .0115 1 .926 2 .073 0 .05 0 .0 0 .3 1 .9 
Lens 2 0 .0 0 .0 0 .019 0 .109 1 .1 1 .9 − 0 .007 0 .006 0 .5 1 .34 
Lens 3 0 .0 0 .0 − 0 .023 0 .0115 1 .926 2 .073 0 .05 0 .0 0 .3 1 .9 
Lens 4 0 .0 0 .0 0 .05 0 .15 1 .4 2 .1 0 .0 0 .05 − 1 .25 0 .6 

Table B2. The parameters of the source parameters of the simulated lenses. Lens 1 and Lens 2 correspond to S ́ersic parameters, whereas Lens 3 and Lens 4 are 
Elson, Fall & Freeman parameters. 

Lens name x (arcsec) y (arcsec) ε1 ε2 I R / r c n 

Lens 1 0 .01 0 .01 − 0 .05555 0 .096225 0 .3 0 .3 2 .5 
Lens 2 0 .3 0 .2 − 0 .060356 − 0 .165828 0 .8 0 .15 2 .5 
Lens 3 0 .0285 0 .0404 − 0 .24647 − 0 .20769 11 .585 0 .03899 

0 .0711 0 .1947 0 .07803 0 .00936 8 .911 0 .01015 
− 0 .0792 0 .0760 − 0 .35274 0 .18159 6 .3651 0 .02594 

0 .0977 0 .0726 − 0 .23621 − 0 .25923 5 .5818 0 .04237 
− 0 .0020 0 .0020 0 .51173 − 0 .36744 2 .254 0 .02441 

0 .1131 0 .0515 0 .53965 0 .05310 1 .029 0 .0336 
Lens 4 − 0 .2 0 .02 0 .53965 0 .05310 1 .029 0 .0336 

Figure B1. The simulated strong lens images we use to test PYAUTOLENS ’s subhalo analysis. Strong lens configurations include a quadruply imaged Einstein 
ring (Lens 1 and Lens 3 ) and two doubly imaged sources (Lens 2 and Lens 4 ). The source is either a single S ́ersic profile (Lens 1 and Lens 2 ) or between one and 
six (Elson et al. 1987 ) light profiles (Lens 3 and Lens 4 ). Each simulated image includes a 10 10.5 M � subhalo at the location marked by the black star. Images 
including a subhalo at these locations with masses of 10 10.0 and 10 9.5 M � and without a subhalo are also fitted in this work. 
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ubhalo positions are reco v ered in all but one lens and masses are
eco v ered – in all but three lenses – within the 3 σ credible regions
f the posteriors. For these three lenses, the masses are close to the
nput, but are offset due to a slightly inaccurate lens mass model (see
ppendix B4 ). 
When a subhalo is present in the data, cells away from the

ubhalo’s true location may show smaller increases in evidence, 
oth in the cells neighbouring the true subhalo and further away 
ut in proximity to the lensed source’s emission. For exam- 
le, in the top-right panel of Fig. B2 (Lens 1 with a 10 10.5 M �
M subhalo) values of � ln Z 

Base > 150 are seen surrounding
he true subhalo (black star), but values of � ln Z 

Base > 50 are
lso seen towards the bottom right and bottom left of the grid.
hese models infer subhalo masses abo v e or below the true in-
ut value in order to produce a lensing signal that is similar
o the signal produced by the true DM subhalo. These are not
alse positives, because they are due to a subhalo being truly
resent somewhere in the data. Models which assume a sub- 
alo offset from a true subhalo can therefore mimic its per- 
urbing effect by rescaling its mass. The same behaviour is dis-
ussed in He et al. ( 2023 ) and therefore must be considered
hen interpreting the SLACS and BELLS-GALLERY lenses. This 
lso highlights the multimodality of the lens model parameter 
pace and demonstrates why our grid search of dynesty fits 
emo v es it. 

Our subhalo analysis therefore successfully detect DM subhaloes 
own to masses of at least 10 9.5 M � for HST -quality data. It does
ot infer false positiv es, pro vided there is sufficient resolution in the
ource reconstruction. These conclusions are only valid for simulated 
ata where the parametric lens light and mass models used to simulate 
he images are the same as those used to fit them. 

3 Justification of source analysis 

olumns 8–10 of Table B3 show subhalo scanning results for fits
sing annular masks and the following source analysis variants: (i) 
witching off Voronoi natural neighbour interpolation such that each 
mage subpixel maps to one Voronoi cell; (ii) using the Voronoi mesh
qui v alent of gradient regularization (see WD03; Nightingale & Dye
015 ) and; (iii) doing both simultaneously. The subhalo inferences 
re as good as before. For all lenses not including a subhalo the
if ferent source v ariants correctly do not fa v our a subhalo, and when
MNRAS 527, 10480–10506 (2024) 
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Scanning for DM subhaloes with strong lensing 10503 

Figure B2. The Bayesian evidence increases � ln Z 

Base inferred by the subhalo scan for every simulated lens. Fits use a Voronoi mesh source reconstruction, 
annular masks and a PL plus shear model with and without a subhalo. Each panel shows a 5 × 5 grid of dynesty non-linear searches where the grid of o v erlaid 
v alues sho ws � ln Z 

Base v alues. The input subhalo mass increases from left to right and dif ferent lenses are sho wn across the ro ws. The ( y , x ) coordinates of 
each subhalo are confined to the 2D grid cell via uniform priors and the inferred values are shown by crosses. The true subhalo location is marked with a star. 
The star shows the DM subhalo’s maximum a posteriori inferred location for this fit. The colour bar ranges between 0 and 20 so that candidate DM subhaloes 
( � ln Z 

Base > 10) are coloured distinctly from non-candidates. 
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 subhalo is included it is reco v ered in the majority of lenses. Our DM
ubhalo results are therefore not sensitive to the specifics of the source
nalysis. This is because a Bayesian evidence increase of � ln Z >

0 corresponds to a � 5 σ result. Changing such a large Bayesian
vidence increase via the source regularization or interpolation would 
equire a much more radical change in the priors about how smooth
alaxies are. 

The final four columns of Table B3 show the o v erall log Bayesian
 vidence v alues, ln Z , using the dif ferent source v ariants for the lens
odel including a DM subhalo. These can be compared in order 

o determine the optimal source analysis. In 15 out of 16 lenses,
he highest evidence source analysis uses both natural neighbour 
oronoi interpolation and adaptive luminosity-based regularization, 
ustifying our choice to use it in the main paper. Table B3 shows that
sing adaptive regularization is more important than interpolation, a 
esult that is consistent with the findings of Nightingale et al. (2018) ,
n particular figs 6 –8 , and Section 5 , who showed that for compact
ources different regions of the source reconstruction require differ- 
nt levels of regularization in order to ensure a clean reconstruction,
 result also discussed by Vegetti et al. ( 2014 ). Recently, Vernardos &
oopmans ( 2022 ) performed a similar comparison of different source
ethods and argued in fa v our of ‘observ ationally moti v ated priors’

or the source regularization. Detailed comparison is beyond the 
cope of this work. 
MNRAS 527, 10480–10506 (2024) 



10504 J. W. Nightingale et al. 

M

B
p

T  

b  

t  

v  

h  

T  

A  

γ  

γ  

d  

e  

i  

m  

t  

s
 

s  

T  

s  

d  

r  

o  

i  

o  

2  

v  

o  

t  

s  

G  

t  

t  

p  

t  

i  

2
 

m  

l  

l  

m  

r  

o  

w  

s
 

h  

F  

i  

(  

o  

p  

d  

p  

t  

m

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/527/4/1
4 Mass models adjust parameters to absorb subhalo 
erturbation 

able B4 shows the PL plus shear mass models inferred directly
efore the subhalo search. For all data sets without a subhalo,
he inferred parameters are accurate and consistent with the input
 alues gi ven in Table B1. Ho we ver, for certain data sets including a
igh-mass subhalo, offsets from the true parameter values are seen.
he most extreme example is for Lens 3 with a 10 10.5 M � subhalo.
 density slope of γ mass = 2 . 6520 + 0 . 0391 

−0 . 0244 is inferred compared to

mass = 2 . 0616 + 0 . 0767 
−0 . 0736 for data without a subhalo (the true value is

mass = 2.073). The magnitude of the offsets vary across the other
ata sets and across different mass model parameters (but not the
xternal shear parameters). Furthermore, the offsets decrease as the
nput subhalo mass is reduced. This is evidence that the PL mass
odel is adjusting its parameters to ‘absorb’ the perturbing effect of

he subhalo in certain lenses, impacting our ability to detect the DM
ubhalo. 

The normalized residuals of the PL model fits to the simulated data
ets using a Voronoi mesh and annular mask are shown in Fig. B3 .
he four simulated lenses run from top to bottom, with the input
ubhalo mass decreasing from left to right (the right most panel shows
ata without a subhalo). The presence of a 10 10.5 M � subhalo creates
esiduals in the majority of fits. These show characteristic features
f subhalo residuals that are localized primarily around a single
mage of the lensed source near the subhalo’s true location, marked
n Fig. B3 as a black star (Vegetti & Koopmans 2009 ; Vegetti et al.
010 ). There are lenses where a 10 10.5 M � subhalo does not produce
isible residuals, which o v erlap with the lenses whose PL model is
ffset from the true input model, reaffirming the notion that changes
NRAS 527, 10480–10506 (2024) 
o the mass model may absorb the subhalo signal. For lenses where no
ubhalo is included (right columns), the residuals are consistent with
aussian noise. A lack of visible residuals does not necessarily mean

hat a subhalo is undetectable, because the source reconstruction has
he flexibility to adapt its reconstruction to account for the subhalo
erturbation. One may still ultimately infer an evidence increase in
he subhalo scanning analysis because the inclusion of the subhalo
mpro v es the likelihood via the regularization terms (see Suyu et al.
006 ). 
The largest offsets of mass model parameters for data with high-
ass subhaloes are seen in Lens 3 and Lens 4 , which are the simulated

enses with complex and compact sources (e.g. BELLS-GALLERY
ike). For more compact sources the mass model therefore appears

ore able to absorb the subhalo signal. This is consistent with the
esults of Ritondale et al. ( 2019b ) who performed sensitivity mapping
f the BELLS-GALLERY lenses and noted reduced sensitivity due to
eaker constraints on the mass model parameters for more compact

ources. 
The centre of PL mass models which absorb high-mass DM sub-

aloes are also offset from their true values of (0.0 arcsec, 0.0 arcsec).
 or e xample, for Lens 3 with a 10 10.5 M � subhalo the inferred centre

s ( x mass , y mass ) = (0.005 arcsec, 0.003 arcsec) and for Lens 4 it is
 x mass , y mass ) = (0.002 arcsec, 0.012 arcsec). Both these centres are
ffset from (0.0 arcsec, 0.0 arcsec) at 3 σ confidence. The decom-
osed mass models fitted in this work tie the 2D stellar mass
istribution to the emission of the lens galaxy’s light, and therefore
ut strong constraints on the stellar mass profile centre (as well as
he ellipticity components). This may reduce a decomposed mass

odel’s ability to absorb a DM subhalo signal. 
0480/7458645 by U
niversity of D

urham
 user on 29 February 2024
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Figure B3. The lens subtracted images (left panel) and normalized residuals (data minus model divided by noise) of a PL plus shear model fit without a subhalo 
to each simulated data set. The lens subtracted images are for each data set with a 10 10.5 M � subhalo. Panels to the right show the residuals for data sets where 
the input subhalo mass increases from left to right and different lenses are shown across the rows. Fits are shown for a Voronoi mesh source reconstruction and 
annular masks. The true subhalo location is marked with a black star. For certain lenses and source models, the PL plus shear model leaves residuals in the 
vicinity of the subhalo. 
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