136 research outputs found

    Iodouracil-mediated photocrosslinking of DNA to EcoRII restriction endonuclease in catalytic conditions

    Get PDF
    We used a XeCl excimer laser with 50 ns pulses, a frequency of 0.3 Hz and a wavelength of 308 mn in appropriate conditions for the photocrosslinking of EcoRII restriction endonuclease to a 14-mer DNA duplex, containing a 5-iodo-2â€Č-deoxyuridine residue (IdU). IdU replaced the thymidine residue within the EcoRII recognition sequence 5â€Č-CCT/AGG. The binding of EcoRII endonuclease to the IdU-containing DNA duplex was analyzed by gel retardation assay in the presence of Ca2+ or Mg2+ ions. Photocrosslinking of EcoRII to the IdU-containing DNA duplex occurred in a pre-reactive complex formed in the presence of Ca2+ ions. Photocrosslinking yields as a function of time and UV-laser light intensity were studied.We thank Professor Alexander Yu. Borisov for valuable discussions and Robin Rycroft for assistance in preparation of the manuscript. We are grateful to Professor Ashok Bhagwat for providing us with the pR224 plasmid containing the ecoRII gene. This study was supported by the Russian Foundation of Fundamental Investigation (project no. 01–04–48637).Peer reviewe

    Poly(arabitol phosphate) teichoic acid in the cell wall of Agromyces cerinus subsp. cerinus VKM Ac-1340T

    Get PDF
    AbstractOn the basis of NMR studies and analysis of the products of acid and alkaline hydrolyses the following structures were established for the repeating units of poly(arabitol phosphate) teichoic acid: α-6-deoxy-l-Talp-(1 → 3)-ÎČ-d-GIcpNAc-(1 → 2)-α-l-Rhap-(1 → 4(2)-d-Arabitol-PO4 and ÎČ-d-GlcpNAc-(1 → 2)-α-l-Rhap-(1 → 4(2)-d-arabitol-PO4. The molar ratio of these units is about 1.2:1.0, respectively. Poly(arabitol phosphate) teichoic acid is here reported in bacterial cell walls for the first time

    Structures of new acidic O-specific polysaccharides of the bacterium Proteus mirabilis serogroups O26 and O30

    Get PDF
    AbstractThe polysaccharide chains of the lipopolysaccharides of the Proteus mirabilis serogroups O26 and O30 were studied using sugar and methylation analysis and 1H and 13C NMR spectroscopy, including two-dimensional correlation spectroscopy and rotating-frame NOE spectroscopy. The polysaccharides were found to be acidic due to the presence of d-galacturonic acid and its amide with l-lysine in serogroup O26 or d-glucuronic acid in serogroup O30, and the structures of their tetrasaccharide repeating units were established. The O26-specific polysaccharide is structurally and serologically related to the O-specific polysaccharide of P. mirabilis O28, which includes amides of d-GalA with l-lysine and l-serine [Radziejewska-Lebrecht, J. et al. (1995) Eur. J. Biochem. 230, 705–712]

    Elucidation of a masked repeating structure of the O-specific polysaccharide of the halotolerant soil bacteria Azospirillum halopraeferens Au4

    Get PDF
    Abstract An O-specific polysaccharide was obtained by mild acid hydrolysis of the lipopolysaccharide isolated by the phenol-water extraction from the halotolerant soil bacteria Azospirillum halopraeferens type strain Au4. The polysaccharide was studied by sugar and methylation analyses, selective cleavages by Smith degradation and solvolysis with trifluoroacetic acid, one-and two-dimensional 1 H and 13 C NMR spectroscopy. The following masked repeating structure of the O-specific polysaccharide was established: →3)- where non-stoichiometric substituents, an O-methyl group (~45%) and a side-chain glucose residue (~65%), are shown in italics. 63

    Production of the K16 capsular polysaccharide by Acinetobacter baumannii ST25 isolate D4 involves a novel glycosyltransferase encoded in the KL16 gene cluster

    Get PDF
    A new capsular polysaccharide (CPS) biosynthesis gene cluster, KL16, was found in the genome sequence of a clinical Acinetobacter baumannii ST25 isolate, D4. The variable part of KL16 contains a module of genes for synthesis of 5,7-diacetamido-3,5,7,9-tetradeoxy-l-glycero-l-manno-non-2-ulosonic acid (5,7-di-N-acetylpseudaminic acid, Pse5Ac7Ac), a gene encoding ItrA3 that initiates the CPS synthesis with d-GlcpNAc, and two glycosyltransferase (Gtr) genes. The K16 CPS was studied by sugar analysis and Smith degradation along with 1D and 2D H and C NMR spectroscopy, and shown to be built up of linear trisaccharide repeats containing d-galactose (d-Gal), N-acetyl-d-glucosamine (d-GlcNAc), and Pse5Ac7Ac. The d-Galp residue is linked to the d-GlcpNAc initiating sugar via a ÎČ-(1 → 3) linkage evidently formed by a Gtr5 variant, Gtr5, encoded in KL16. This reveals an altered or relaxed substrate specificity of this variant as the majority of Gtr5-type glycosyltransferases have previously been shown to form a ÎČ-d-Galp-(1 → 3)-d-GalpNAc linkage. The ÎČ-Psep5Ac7Ac-(2 → 4)-d-Galp linkage is predicted to be formed by the other glycosyltransferase, Gtr37, which does not match members of any known glycosyltransferase family

    Phenological shifts of abiotic events, producers and consumers across a continent

    Get PDF
    Ongoing climate change can shift organism phenology in ways that vary depending on species, habitats and climate factors studied. To probe for large-scale patterns in associated phenological change, we use 70,709 observations from six decades of systematic monitoring across the former Union of Soviet Socialist Republics. Among 110 phenological events related to plants, birds, insects, amphibians and fungi, we find a mosaic of change, defying simple predictions of earlier springs, later autumns and stronger changes at higher latitudes and elevations. Site mean temperature emerged as a strong predictor of local phenology, but the magnitude and direction of change varied with trophic level and the relative timing of an event. Beyond temperature-associated variation, we uncover high variation among both sites and years, with some sites being characterized by disproportionately long seasons and others by short ones. Our findings emphasize concerns regarding ecosystem integrity and highlight the difficulty of predicting climate change outcomes. The authors use systematic monitoring across the former USSR to investigate phenological changes across taxa. The long-term mean temperature of a site emerged as a strong predictor of phenological change, with further imprints of trophic level, event timing, site, year and biotic interactions.Peer reviewe

    Chronicles of nature calendar, a long-term and large-scale multitaxon database on phenology

    Get PDF
    We present an extensive, large-scale, long-term and multitaxon database on phenological and climatic variation, involving 506,186 observation dates acquired in 471 localities in Russian Federation, Ukraine, Uzbekistan, Belarus and Kyrgyzstan. The data cover the period 1890-2018, with 96% of the data being from 1960 onwards. The database is rich in plants, birds and climatic events, but also includes insects, amphibians, reptiles and fungi. The database includes multiple events per species, such as the onset days of leaf unfolding and leaf fall for plants, and the days for first spring and last autumn occurrences for birds. The data were acquired using standardized methods by permanent staff of national parks and nature reserves (87% of the data) and members of a phenological observation network (13% of the data). The database is valuable for exploring how species respond in their phenology to climate change. Large-scale analyses of spatial variation in phenological response can help to better predict the consequences of species and community responses to climate change.Peer reviewe

    Global data on earthworm abundance, biomass, diversity and corresponding environmental properties

    Get PDF
    Publisher Copyright: © 2021, The Author(s).Earthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties. Datasets were required, at a minimum, to include abundance or biomass of earthworms at a site. Where possible, site-level species lists were included, as well as the abundance and biomass of individual species and ecological groups. This global dataset contains 10,840 sites, with 184 species, from 60 countries and all continents except Antarctica. The data were obtained from 182 published articles, published between 1973 and 2017, and 17 unpublished datasets. Amalgamating data into a single global database will assist researchers in investigating and answering a wide variety of pressing questions, for example, jointly assessing aboveground and belowground biodiversity distributions and drivers of biodiversity change.Peer reviewe
    • 

    corecore