87 research outputs found

    The intrinsic Baldwin effect in broad Balmer lines of six long-term monitored AGNs

    Full text link
    We investigate the intrinsic Baldwin effect (Beff) of the broad Hα\alpha and Hβ\beta emission lines for six Type 1 active galactic nuclei (AGNs) with different broad line characteristics: two Seyfert 1 (NGC 4151 and NGC 5548), two AGNs with double-peaked broad line profiles (3C 390.3 and Arp 102B), one narrow line Seyfert 1 (Ark 564), and one high-luminosity quasar with highly red asymmetric broad line profiles (E1821+643). We found that a significant intrinsic Beff was present in all Type 1 AGNs in our sample. Moreover, we do not see strong difference in intrinsic Beff slopes in different types of AGNs which probably have different physical properties, such as inclination, broad line region geometry, or accretion rate. Additionally, we found that the intrinsic Beff was not connected with the global one, which, instead, could not be detected in the broad Hα\alpha or Hβ\beta emission lines. In the case of NGC 4151, the detected variation of the Beff slope could be due to the change in the site of line formation in the BLR. Finally, the intrinsic Beff might be caused by the additional optical continuum component that is not part of the ionization continuum.Comment: 12 pages, 8 figures, Accepted for publication in A&

    Spectral optical monitoring of 3C390.3 in 1995-2007: I. Light curves and flux variation of the continuum and broad lines

    Full text link
    Here we present the results of the long-term (1995-2007) spectral monitoring of the broad line radio galaxy \object{3C~390.3}, a well known AGN with the double peaked broad emission lines, usually assumed to be emitted from an accretion disk. To explore dimensions and structure of the BLR, we analyze the light curves of the broad Hα\alpha and Hβ\beta line fluxes and the continuum flux. In order to find changes in the BLR, we analyze the Hα\alpha and Hβ\beta line profiles, as well as the change in the line profiles during the monitoring period. First we try to find a periodicity in the continuum and Hβ\beta light curves, finding that there is a good chance for quasi-periodical oscillations. Using the line shapes and their characteristics (as e.g. peaks separation and their intensity ratio, or FWHM) of broad Hβ\beta and Hα\alpha lines, we discuss the structure of the BLR. Also, we cross-correlate the continuum flux with Hβ\beta and Hα\alpha lines to find dimensions of the BLR. We found that during the monitoring period the broad emission component of the Hα\alpha and Hβ\beta lines, and the continuum flux varied by a factor of \approx 4-5. Also, we detected different structure in the line profiles of Hα\alpha and Hβ\beta. It seems that an additional central component is present and superposed to the disk emission. In the period of high activity (after 2002), Hβ\beta became broader than Hα\alpha and red wing of Hβ\beta was higher than the one of Hα\alpha. We found time lags of \sim95 days between the continuum and Hβ\beta flux, and about 120 days between the continuum and Hα\alpha flux. Variation in the line profiles, as well as correlation between the line and continuum flux during the monitoring period is in the favor of the disk origin of the broad lines with the possible contribution of some additional region and/or some kind of perturbation in the disk.Comment: 32 pages, accepted to A&A, typos correcte

    The line parameters and ratios as the physical probe of the line emitting regions in AGN

    Full text link
    Here we discuss the physical conditions in the emission line regions (ELR) of active galactic nuclei (AGN), with the special emphasize on the unresolved problems, e.g. the stratification of the Broad Line Region (BLR) or the failure of the photoionization to explain the strong observed optical Fe II emission. We use here different line fluxes in order to probe the properties of the ELR, such as the hydrogen Balmer lines (Ha to He), the helium lines from two subsequent ionization levels (He II 4686 and He I 5876) and the strongest Fe II lines in the wavelength interval 4400-5400 \AA. We found that the hydrogen Balmer and helium lines can be used for the estimates of the physical parameters of the BLR, and we show that the Fe II emission is mostly emitted from an intermediate line region (ILR), that is located further away from the central continuum source than the BLR.Comment: 8 pages, 9 figures, 2 tables, New Astronomy Reviews (Proceeding of 7th SCSLSA), in pres

    Long-term monitoring of the broad-line region properties in a selected sample of AGN

    Full text link
    We present the results of the long-term optical monitoring campaign of active galactic nuclei (AGN) coordinated by the Special Astrophysical Observatory of the Russian Academy of Science. This campaign has produced a remarkable set of optical spectra, since we have monitored for several decades different types of broad-line (type 1) AGN, from a Seyfert 1, double-peaked line, radio loud and radio quiet AGN, to a supermassive binary black hole candidate. Our analysis of the properties of the broad line region (BLR) of these objects is based on the variability of the broad emission lines. We hereby give a comparative review of the variability properties of the broad emission lines and the BLR of seven different type 1 AGNs, emphasizing some important results, such as the variability rate, the BLR geometry, and the presence of the intrinsic Baldwin effect. We are discussing the difference and similarity in the continuum and emission line variability, focusing on what is the impact of our results to the supermassive black hole mass determination from the BLR properties.Comment: Published in Frontiers in Astronomy and Space Scienc

    Contribution of a Disk Component to Single Peaked Broad Lines of Active Galactic Nuclei

    Full text link
    We study the disk emission component hidden in the single-peaked Broad Emission Lines (BELs) of Active Galactic Nuclei (AGN). We compare the observed broad lines from a sample of 90 Seyfert 1 spectra taken from the Sloan Digital Sky Survey with simulated line profiles. We consider a two-component Broad Line Region (BLR) model where an accretion disk and a surrounding non-disk region with isotropic cloud velocities generate the simulated BEL profiles. The analysis is mainly based in measurements of the full widths (at 10%, 20% and 30% of the maximum intensity) and of the asymmetries of the line profiles. Comparing these parameters for the simulated and observed Hα\alpha broad lines, we {found} that the hidden disk emission {may} be present in BELs even if the characteristic {of two peaked line profiles is} absent. For the available sample of objects (Seyfert 1 galaxies with single-peaked BELs), our study indicates that, {in the case of the hidden disk emission in single peaked broad line profiles}, the disk inclination tends to be small (mostly i<25i<25^\circ) and that the contribution of the disk emission to the total flux should be smaller than the contribution of the surrounding region.Comment: 18 Figures, 1 Table, MNRAS-accepted. MNRAS-accepte

    Spectral Optical Monitoring of the Narrow Line Seyfert 1 galaxy Ark 564

    Full text link
    We present the results of a long-term (1999--2010) spectral optical monitoring campaign of the active galactic nucleus (AGN) Ark 564, which shows a strong Fe II line emission in the optical. This AGN is a narrow line Seyfert 1 (NLS1) galaxies, a group of AGNs with specific spectral characteristics. We analyze the light curves of the permitted Ha, Hb, optical Fe II line fluxes, and the continuum flux in order to search for a time lag between them. Additionally, in order to estimate the contribution of iron lines from different multiplets, we fit the Hb and Fe II lines with a sum of Gaussian components. We found that during the monitoring period the spectral variation (F_max/F_min) of Ark 564 was between 1.5 for Ha to 1.8 for the Fe II lines. The correlation between the Fe II and Hb flux variations is of higher significance than that of Ha and Hb (whose correlation is almost absent). The permitted-line profiles are Lorentzian-like, and did not change shape during the monitoring period. We investigated, in detail, the optical Fe II emission and found different degrees of correlation between the Fe II emission arising from different spectral multiplets and the continuum flux. The relatively weak and different degrees of correlations between permitted lines and continuum fluxes indicate a rather complex source of ionization of the broad line emission region.Comment: Accepted for publication in ApJ

    Constraints on the black hole spin in the quasar SDSS J094533.99+100950.1

    Full text link
    The spin of the black hole is an important parameter which may be responsible for the properties of the inflow and outflow of the material surrounding a black hole. Broad band IR/optical/UV spectrum of the quasar SDSS J094533.99+100950.1 is clearly disk-dominated, with the spectrum peaking up in the observed frequency range. Therefore, disk fitting method usually used for Galactic black holes can be used in this object to determine the black hole spin. We develop the numerical code for computing disk properties, including radius-dependent hardening factor, and we apply the ray-tracing method to incorporate all general relativity effects in light propagation. We show that the simple multicolor disk model gives a good fit, without any other component required, and the disk extends down to the marginally stable orbit. The best fit accretion rate is 0.13, well below the Eddington limit, and the black hole spin is moderate, 0.3. The contour error for the fit combined with the constraints for the black hole mass and the disk inclination gives a constraint that the spin is lower than 0.8. We discuss the sources of possible systematic errors in the parameter determinations

    The INTEGRAL/IBIS AGN catalogue I: X-ray absorption properties versus optical classification

    Full text link
    In this work we present the most comprehensive INTEGRAL AGN sample which lists 272 objects. Here we mainly use this sample to study the absorption properties of active galaxies, to probe new AGN classes and to test the AGN unification scheme. We find that half (48%) of the sample is absorbed while the fraction of Compton thick AGN is small (~7%). In line with our previous analysis, we have however shown that when the bias towards heavily absorbed objects which are lost if weak and at large distance is removed, as it is possible in the local Universe, the above fractions increase to become 80% and 17%. We also find that absorption is a function of source luminosity, which implies some evolution in the obscuration properties of AGN. Few peculiar classes, so far poorly studied in the hard X-ray band, have been detected and studied for the first time such as 5 XBONG, 5 type 2 QSOs and 11 LINERs. In terms of optical classification, our sample contains 57% of type 1 and 43% of type 2 AGN; this subdivision is similar to that found in X-rays if unabsorbed versus absorbed objects are considered, suggesting that the match between optical and X-ray classification is overall good. Only a small percentage of sources (12%) does not fulfill the expectation of the unified theory as we find 22 type 1 AGN which are absorbed and 10 type 2 AGN which are unabsorbed. Studying in depth these outliers we found that most of the absorbed type 1 AGN have X-ray spectra characterized by either complex or warm/ionized absorption more likely due to ionized gas located in an accretion disk wind or in the biconical structure associated to the central nucleus, therefore unrelated to the toroidal structure. Among 10 type 2 AGN which resulted to be unabsorbed, at most 3-4% is still eligible to be classified as a "true" type 2 AGN.Comment: 21 pages, 6 figures, 5 tables. Accepted for publication on MNRAS. arXiv admin note: text overlap with arXiv:0709.2077 by other author

    Broad-line Balmer Decrements in Blue Active Galactic Nuclei

    Full text link
    We have investigated the broad-line Balmer decrements (Halpha/Hbeta) for a large, homogeneous sample of Seyfert 1 galaxies and QSOs using spectroscopic data obtained in the Sloan Digital Sky Survey. The sample, drawn from the Fourth Data Release, comprises 446 low redshift (z < 0.35) active galactic nuclei (AGN) that have blue optical continua as indicated by the spectral slopes in order to minimize the effect of dust extinction. We find that (i) the distribution of the intrinsic broad-line Halpha/Hbeta ratio can be well described by log-Gaussian, with a peak at Halpha/Hbeta=3.06 and a standard deviation of about 0.03 dex only; (ii) the Balmer decrement does not correlate with AGN properties such as luminosity, accretion rate, and continuum slope, etc.; (iii) on average, the Balmer decrements are found to be only slightly larger in radio-loud sources (3.37) and sources having double-peaked emission-line profiles (3.27) compared to the rest of the sample. We therefore suggest that the broad-line Halpha/Hbeta ratio can be used as a good indicator for dust extinction in the AGN broad-line region; this is especially true for radio-quiet AGN with regular emission-line profiles, which constitute the vast majority of the AGN population.Comment: To appear in MNRAS. The data and the fitted parameters for the decomposed spectral components (continuum, FeII and other emission lines) of the 446 blue AGNs are available at http://staff.ustc.edu.cn/~xbdong/Data_Release/blueAGN_DR4

    Broad Line Region Physical Conditions along the Quasar Eigenvector 1 Sequence

    Full text link
    [Abridged] We compare broad emission line profiles and estimate line ratios for all major emission lines between Ly-alpha and H-beta in a sample of six quasars. The sources were chosen with two criteria in mind: the existence of high quality optical and UV spectra as well as the possibility to sample the spectroscopic diversity in the 4D Eigenvector 1 context . In the latter sense each source occupies a region (bin) in the FWHM(H-beta) vs. optical FeII strength plane that is significantly different from the others. High S/N H-beta emission line profiles are used as templates for modeling the other lines (Ly-alpha, CIV 1549, HeII 1640, Al III 1860, Si III] 1892, and Mg II 2800). We can adequately model all broad lines assuming the existence of three components distinguished by blueshifted, unshifted and redshifted centroids (indicated as blue, broad and very broad component respectively). The broad component (high electron density, low ionization parameter; high column density) is present in almost all type-1 quasars and therefore corresponds most closely to the classical broad line emitting region (the reverberating component). The blue component emission (lower electron density; high ionization; low column density) arises in less optically thick gas; it is often thought to arise in an accretion disk wind. The least understood component involves the very broad component (high ionization and large column density). It is perhaps the most distinguishing characteristic of quasars with FWHM H-beta > 4000 km/s that belong to the so-called Population B of our 4DE1 space. Population A quasars (FWHM H-beta < 4000 km/s) are dominated by broad component emission in H-beta and blue component emission in CIV 1549 and other high ionization lines. 4DE1 appears to be the most useful current context for revealing and unifying spectral diversity in type-1 quasars.Comment: 7 Tables, 5 Figures; accepted for publication in Monthly Notices of the Royal Astronomical Societ
    corecore