Abstract

Here we present the results of the long-term (1995-2007) spectral monitoring of the broad line radio galaxy \object{3C~390.3}, a well known AGN with the double peaked broad emission lines, usually assumed to be emitted from an accretion disk. To explore dimensions and structure of the BLR, we analyze the light curves of the broad Hα\alpha and Hβ\beta line fluxes and the continuum flux. In order to find changes in the BLR, we analyze the Hα\alpha and Hβ\beta line profiles, as well as the change in the line profiles during the monitoring period. First we try to find a periodicity in the continuum and Hβ\beta light curves, finding that there is a good chance for quasi-periodical oscillations. Using the line shapes and their characteristics (as e.g. peaks separation and their intensity ratio, or FWHM) of broad Hβ\beta and Hα\alpha lines, we discuss the structure of the BLR. Also, we cross-correlate the continuum flux with Hβ\beta and Hα\alpha lines to find dimensions of the BLR. We found that during the monitoring period the broad emission component of the Hα\alpha and Hβ\beta lines, and the continuum flux varied by a factor of \approx 4-5. Also, we detected different structure in the line profiles of Hα\alpha and Hβ\beta. It seems that an additional central component is present and superposed to the disk emission. In the period of high activity (after 2002), Hβ\beta became broader than Hα\alpha and red wing of Hβ\beta was higher than the one of Hα\alpha. We found time lags of \sim95 days between the continuum and Hβ\beta flux, and about 120 days between the continuum and Hα\alpha flux. Variation in the line profiles, as well as correlation between the line and continuum flux during the monitoring period is in the favor of the disk origin of the broad lines with the possible contribution of some additional region and/or some kind of perturbation in the disk.Comment: 32 pages, accepted to A&A, typos correcte

    Similar works