488 research outputs found

    Melatonin and sleep responses following exercise in elite female athletes

    Get PDF
    To determine the melatonin concentrations and subsequent sleep indices of elite netball athletes following a training day when compared to a control day. Ten elite female netball athletes (mean ± SD; age = 23 ± 6 yrs) provided saliva samples PRE (17:15h) and POST (22:00h) a training session, and a day with no training (CONTROL). Sleep monitoring was performed using wrist actigraphy to assess total time in bed (TTB), total sleep time (TST), sleep efficiency (SE) and sleep latency (SL). Melatonin levels were significantly lower (p < 0.05), both PRE and POST the training condition (6.2 and 17.6 pg/mL, respectively) when compared to the CONTROL (14.8 and 24.3 pg/mL, respectively). There were no significant differences observed between conditions for any of the sleep variables. However, a small reduction in TST could be observed following the training session condition compared to the CONTROL condition. The scheduling of netball training in the evening is shown to suppress salivary melatonin levels. This may have an influence on subsequent sleep following night-time exercise

    Sending a message: How significant events have influenced the warnings landscape in Australia

    Get PDF
    Publisher's version (útgefin grein)The Bureau of Meteorology has a mandate to issue warnings for weather and climate events that are likely to result in harm and loss. This service has been delivered in an end-to-end (science to service) context and warnings messages have typically been crafted to describe the current and predicted future state of the environment and recommended protective actions. However, the warnings landscape is evolving and Australian governments and emergency management agencies are adopting rapidly diversifying roles in a range of warnings processes. This evolution coincides with the shift in international strategies: from the mitigation and crisis management approach to the emphasis on building community resilience. Following a number of severe weather-related events that resulted in serious losses a series of Australian inquiries, reviews and social research investigated warnings efficacy. This included the National Review of Warnings and Information for Australia, with a recommendation suggesting that a Total Warning System concept be more formally considered across multiple hazards, rather than just flood, as it currently stands. Consequently, Australian warnings agencies are embracing a more people-centred approach recognising the need for messages to include detail of likely impact alongside an implied level of risk. Thus, developing capability to deliver impact forecasting and risk-based warnings services in a multi (natural) hazard context. With a key focus on flood, fire and tropical cyclone, this paper reviews international and national warnings policy documents and social research and explores the evidence-based evolution of warning services with respect to the Total Warning System concept.Deanne Bird has been supported by the Nordic Centre of Excellence for Resilience and Societal Security – NORDRESS, which is funded by the Nordic Societal Security Programme.Peer Reviewe

    Nonredundant Roles for Cytochrome c_2 and Two High-Potential Iron-Sulfur Proteins in the Photoferrotroph Rhodopseudomonas palustris TIE-1

    Get PDF
    The purple bacterium Rhodopseudomonas palustris TIE-1 expresses multiple small high-potential redox proteins during photoautotrophic growth, including two high-potential iron-sulfur proteins (HiPIPs) (PioC and Rpal_4085) and a cytochrome c_2. We evaluated the role of these proteins in TIE-1 through genetic, physiological, and biochemical analyses. Deleting the gene encoding cytochrome c_2 resulted in a loss of photosynthetic ability by TIE-1, indicating that this protein cannot be replaced by either HiPIP in cyclic electron flow. PioC was previously implicated in photoferrotrophy, an unusual form of photosynthesis in which reducing power is provided through ferrous iron oxidation. Using cyclic voltammetry (CV), electron paramagnetic resonance (EPR) spectroscopy, and flash-induced spectrometry, we show that PioC has a midpoint potential of 450 mV, contains all the typical features of a HiPIP, and can reduce the reaction centers of membrane suspensions in a light-dependent manner at a much lower rate than cytochrome c_2. These data support the hypothesis that PioC linearly transfers electrons from iron, while cytochrome c_2 is required for cyclic electron flow. Rpal_4085, despite having spectroscopic characteristics and a reduction potential similar to those of PioC, is unable to reduce the reaction center. Rpal_4085 is upregulated by the divalent metals Fe(II), Ni(II), and Co(II), suggesting that it might play a role in sensing or oxidizing metals in the periplasm. Taken together, our results suggest that these three small electron transfer proteins perform different functions in the cell

    QDMR: a quantitative method for identification of differentially methylated regions by entropy

    Get PDF
    DNA methylation plays critical roles in transcriptional regulation and chromatin remodeling. Differentially methylated regions (DMRs) have important implications for development, aging and diseases. Therefore, genome-wide mapping of DMRs across various temporal and spatial methylomes is important in revealing the impact of epigenetic modifications on heritable phenotypic variation. We present a quantitative approach, quantitative differentially methylated regions (QDMRs), to quantify methylation difference and identify DMRs from genome-wide methylation profiles by adapting Shannon entropy. QDMR was applied to synthetic methylation patterns and methylation profiles detected by methylated DNA immunoprecipitation microarray (MeDIP-chip) in human tissues/cells. This approach can give a reasonable quantitative measure of methylation difference across multiple samples. Then DMR threshold was determined from methylation probability model. Using this threshold, QDMR identified 10 651 tissue DMRs which are related to the genes enriched for cell differentiation, including 4740 DMRs not identified by the method developed by Rakyan et al. QDMR can also measure the sample specificity of each DMR. Finally, the application to methylation profiles detected by reduced representation bisulphite sequencing (RRBS) in mouse showed the platform-free and species-free nature of QDMR. This approach provides an effective tool for the high-throughput identification of potential functional regions involved in epigenetic regulation

    Determinants of a transcriptionally competent environment at the GM-CSF promoter

    Get PDF
    Granulocyte macrophage-colony stimulating factor (GM-CSF) is produced by T cells, but not B cells, in response to immune signals. GM-CSF gene activation in response to T-cell stimulation requires remodelling of chromatin associated with the gene promoter, and these changes do not occur in B cells. While the CpG methylation status of the murine GM-CSF promoter shows no correlation with the ability of the gene to respond to activation, we find that the basal chromatin environment of the gene promoter influences its ability to respond to immune signals. In unstimulated T cells but not B cells, the GM-CSF promoter is selectively marked by enrichment of histone acetylation, and association of the chromatin-remodelling protein BRG1. BRG1 is removed from the promoter upon activation concomitant with histone depletion and BRG1 is required for efficient chromatin remodelling and transcription. Increasing histone acetylation at the promoter in T cells is paralleled by increased BRG1 recruitment, resulting in more rapid chromatin remodelling, and an associated increase in GM-CSF mRNA levels. Furthermore, increasing histone acetylation in B cells removes the block in chromatin remodelling and transcriptional activation of the GM-CSF gene. These data are consistent with a model in which histone hyperacetylation and BRG1 enrichment at the GM-CSF promoter, generate a chromatin environment competent to respond to immune signals resulting in gene activation

    WireWall: a new approach to coastal wave hazard monitoring

    Get PDF
    WireWall will be the first agile in situ system to make field measurements of overtopping on a wave-by-wave basis. Such data will enable site-specific calibration of (i) numerical tools used in sea defence design, (ii) flood forecasting models and (iii) public safety tolerances used by shoreline managers. The new approach transfers existing laboratory and offshore wave monitoring capabilities to the problem of coastal hazard monitoring. The capacitance wire system will collect high frequency field data to quantify wave overtopping velocity and volume. Our approach will replace the use of water collection tanks, which provide very limited information, are cumbersome, and hence rarely deployed. The method will use a coupled modelling-observational-modelling approach. Industry standard overtopping tools will generate a numerical dataset of plausible overtopping conditions at our study site Crosby (NW England). This data will inform the configuration of the wire units to be used in dockside and flume tests prior to the design of the field rig. The newly collected field observations will allow site-specific calibration and validation of the numerical tools, which will then be applied for a range of storm and beach conditions to develop site-specific overtopping safety tolerances and identify overtopping trigger levels for the existing sea wall

    Genome-wide quantitative assessment of variation in DNA methylation patterns

    Get PDF
    Genomic DNA methylation contributes substantively to transcriptional regulations that underlie mammalian development and cellular differentiation. Much effort has been made to decipher the molecular mechanisms governing the establishment and maintenance of DNA methylation patterns. However, little is known about genome-wide variation of DNA methylation patterns. In this study, we introduced the concept of methylation entropy, a measure of the randomness of DNA methylation patterns in a cell population, and exploited it to assess the variability in DNA methylation patterns of Alu repeats and promoters. A few interesting observations were made: (i) within a cell population, methylation entropy varies among genomic loci; (ii) among cell populations, the methylation entropies of most genomic loci remain constant; (iii) compared to normal tissue controls, some tumors exhibit greater methylation entropies; (iv) Alu elements with high methylation entropy are associated with high GC content but depletion of CpG dinucleotides and (v) Alu elements in the intronic regions or far from CpG islands are associated with low methylation entropy. We further identified 12 putative allelic-specific methylated genomic loci, including four Alu elements and eight promoters. Lastly, using subcloned normal fibroblast cells, we demonstrated the highly variable methylation patterns are resulted from low fidelity of DNA methylation inheritance

    Gaze sensitivity: function and mechanisms from sensory and cognitive perspectives

    Get PDF
    Sensitivity to the gaze of other individuals has long been a primary focus in sociocognitive research on humans and other animals. Information about where others are looking may often be of adaptive value in social interactions and predator avoidance, but studies across a range of taxa indicate there are substantial differences in the extent to which animals obtain and use information about other individuals' gaze direction. As the literature expands, it is becoming increasingly difficult to make comparisons across taxa as experiments adopt and adjust different methodologies to account for differences between species in their socioecology, sensory systems and possibly also their underlying cognitive mechanisms. Furthermore, as more species are found to exhibit gaze sensitivity, more terminology arises to describe the behaviours. To clarify the field, we propose a restricted nomenclature that defines gaze sensitivity in terms of observable behaviour, independent of the underlying mechanisms. This is particularly useful in nonhuman animal studies where cognitive interpretations are ambiguous. We then describe how socioecological factors may influence whether species will attend to gaze cues, and suggest links between ultimate factors and proximate mechanisms such as cognition and perception. In particular, we argue that variation in sensory systems, such as retinal specializations and the position of the eyes, will determine whether gaze cues (e.g. head movement) are perceivable during visual fixation. We end by making methodological recommendations on how to apply these variations in socioecology and visual systems to advance the field of gaze research

    Influence of folate status on genomic DNA methylation in colonic mucosa of subjects without colorectal adenoma or cancer

    Get PDF
    DNA hypomethylation may increase the risk of colorectal cancer. The main aim of this study was to assess the influence of folate status (serum and erythrocyte folate and plasma homocysteine concentrations) on DNA methylation. Methylenetetrahydrofolate reductase (MTHFR 677C → T and 1298A → C), methionine synthase (MS 2756A → G) and cystathionine synthase (CBS 844ins68) polymorphisms were measured to account for potential confounding effects on folate status and DNA methylation. A total of 68 subjects (33 men and 35 women, 36–78 years) free from colorectal polyps or cancer were recruited in a cross-sectional study. Tissue biopsies were obtained at colonoscopy for the determination of DNA methylation in colonic mucosa using an in vitro radiolabelled methyl acceptance assay. Serum and erythrocyte folate were inversely correlated with plasma homocysteine (r=−0.573, P<0.001 and r=−0.307, P=0.01 respectively) and DNA hypomethylation in colonic mucosa (r=−0.311, P=0.01 and r=−0.356, P=0.03). After adjusting for gender, age, body mass index, smoking and genotype, there were weak negative associations between serum and erythrocyte folate and colonic DNA hypomethylation (P=0.07 and P=0.08, respectively)

    Missense mutations in the copper transporter gene ATP7A cause X-Linked distal hereditary motor neuropathy

    Get PDF
    Distal hereditary motor neuropathies comprise a clinically and genetically heterogeneous group of disorders. We recently mapped an X-linked form of this condition to chromosome Xq13.1-q21 in two large unrelated families. The region of genetic linkage included ATP7A, which encodes a copper-transporting P-type ATPase mutated in patients with Menkes disease, a severe infantile-onset neurodegenerative condition. We identified two unique ATP7A missense mutations (p.P1386S and p.T994I) in males with distal motor neuropathy in two families. These molecular alterations impact highly conserved amino acids in the carboxyl half of ATP7A and do not directly involve the copper transporter's known critical functional domains. Studies of p.P1386S revealed normal ATP7A mRNA and protein levels, a defect in ATP7A trafficking, and partial rescue of a S. cerevisiae copper transport knockout. Although ATP7A mutations are typically associated with severe Menkes disease or its milder allelic variant, occipital horn syndrome, we demonstrate here that certain missense mutations at this locus can cause a syndrome restricted to progressive distal motor neuropathy without overt signs of systemic copper deficiency. This previously unrecognized genotype-phenotype correlation suggests an important role of the ATP7A copper transporter in motor-neuron maintenance and function
    corecore