233 research outputs found

    Frailty, inequality and resilience

    Get PDF

    Acceptance and commitment therapy delivered via a mobile phone messaging robot to decrease postoperative opioid use in patients with orthopedic trauma: Randomized controlled trial

    Get PDF
    BACKGROUND: Acceptance and commitment therapy (ACT) is a pragmatic approach to help individuals decrease avoidable pain. OBJECTIVE: This study aims to evaluate the effects of ACT delivered via an automated mobile messaging robot on postoperative opioid use and patient-reported outcomes (PROs) in patients with orthopedic trauma who underwent operative intervention for their injuries. METHODS: Adult patients presenting to a level 1 trauma center who underwent operative fixation of a traumatic upper or lower extremity fracture and who used mobile phone text messaging were eligible for the study. Patients were randomized in a 1:1 ratio to either the intervention group, who received twice-daily mobile phone messages communicating an ACT-based intervention for the first 2 weeks after surgery, or the control group, who received no messages. Baseline PROs were completed. Two weeks after the operative intervention, follow-up was performed in the form of an opioid medication pill count and postoperative administration of PROs. The mean number of opioid tablets used by patients was calculated and compared between groups. The mean PRO scores were also compared between the groups. RESULTS: A total of 82 subjects were enrolled in the study. Of the 82 participants, 76 (38 ACT and 38 controls) completed the study. No differences between groups in demographic factors were identified. The intervention group used an average of 26.1 (SD 21.4) opioid tablets, whereas the control group used 41.1 (SD 22.0) tablets, resulting in 36.5% ([41.1-26.1]/41.1) less tablets used by subjects receiving the mobile phone-based ACT intervention (P=.004). The intervention group subjects reported a lower postoperative Patient-Reported Outcome Measure Information System Pain Intensity score (mean 45.9, SD 7.2) than control group subjects (mean 49.7, SD 8.8; P=.04). CONCLUSIONS: In this study, the delivery of an ACT-based intervention via an automated mobile messaging robot in the acute postoperative period decreased opioid use in selected patients with orthopedic trauma. Participants receiving the ACT-based intervention also reported lower pain intensity after 2 weeks, although this may not represent a clinically important difference. TRIAL REGISTRATION: ClinicalTrials.gov NCT03991546; https://clinicaltrials.gov/ct2/show/NCT03991546

    An extended dose-response model for microbial responses to ionizing radiation

    Get PDF
    © 2017 Siasou, Johnson and Willey. An understanding of the environmental toxicology of ionizing radiation (IR) is needed because nuclear power production is expanding and there is increasing pressure to build nuclear waste repositories. The effects of IR in the environment have long been investigated but there have been fewer studies involving environmental microbiology than its importance to key ecosystems services demands. Here, we highlight some unique aspects of the relationship between microbes and IR and use them to suggest an extended dose-response model. At high doses, IR causes DNA damage and oxidative stress but some microbes have a remarkable capacity for DNA repair and are tolerant of oxidative stress. Not only is significant radioresistance increasingly being reported for microbes, but some microbes are even radiotrophic. The stressful radiative environment of the early Earth might help explain the existence of these traits, which challenge the assumptions of current dose response models for IR. We suggest that a perspective that takes into account these traits plus both dose and dose rate can be used to model an "effects landscape" that might provide insights for the environmental toxicology of IR to microbes. This might help to predict the effects of IR on key ecosystem processes and also be useful in understanding the environmental toxicology of IR in general

    THE FIRST REPORT OF A POSSIBLE SARS-CoV-2 REINFECTION IN NEPAL

    Get PDF
    oai:ojs2.jebas.org:article/1Since August 2020, a growing number of confirmed SARS-CoV-2 cases, after approximately three months, in most of them, again presented a new infection episode, which has been defined as reinfection. So far, no cases have been reported in Nepal, and still there is limited the number of them, especially of those fully confirmed. Here, we report a case and discuss its multiple implications in the ongoing COVID-19 pandemic

    Development of Ni- and Fe- based catalysts with different metal particle sizes for the production of carbon nanotubes and hydrogen from thermo-chemical conversion of waste plastics

    Get PDF
    Co-production of valuable hydrogen and carbon nanotubes (CNTs) has obtained growing interest for the management of waste plastics through thermo-chemical conversion technology. Catalyst development is one of the key factors for this process to improve hydrogen production and the quality of CNTs. In this work, Ni/SiO2 and Fe/SiO2 catalysts with different metal particle sizes were investigated in relation to their performance on the production of hydrogen and CNTs from catalytic gasification of waste polypropylene, using a two-stage fixed-bed reaction system. The influences of the type of metals and the crystal size of metal particles on product yields and the production of CNTs in terms of morphology have been studied using a range of techniques; gas chromatography (GC); X-ray diffraction (XRD); temperature programme oxidation (TPO); scanning electron microscopy (SEM); transmission electron microscopy (TEM) etc. The results show that the Fe-based catalysts, in particular with large particle size (∌80 nm), produced the highest yield of hydrogen (∌25.60 mmol H2 g−1 plastic) and the highest yield of carbons (29 wt.%), as well as the largest fraction of graphite carbons (as obtained from TPO analysis of the reacted catalyst). Both Fe- and Ni-based catalysts with larger metal particles produced higher yield of hydrogen compared with the catalysts with smaller metal particles, respectively. Furthermore, the CNTs formed using the Ni/SiO2-S catalyst (with the smallest metal particles around 8 nm) produced large amount of amorphous carbons, which are undesirable for the process of CNTs production

    Phase II Trial of Neoadjuvant Sitravatinib Plus Nivolumab in Patients Undergoing Nephrectomy for Locally Advanced Clear Cell Renal Cell Carcinoma

    Get PDF
    Sitravatinib is an immunomodulatory tyrosine kinase inhibitor that can augment responses when combined with programmed death-1 inhibitors such as nivolumab. We report a single-arm, interventional, phase 2 study of neoadjuvant sitravatinib in combination with nivolumab in patients with locally advanced clear cell renal cell carcinoma (ccRCC) prior to curative nephrectomy (NCT03680521). The primary endpoint was objective response rate (ORR) prior to surgery with a null hypothesis ORR = 5% and the alternative hypothesis set at ORR = 30%. Secondary endpoints were safety; pharmacokinetics (PK) of sitravatinib; immune effects, including changes in programmed cell death-ligand 1 expression; time-to-surgery; and disease-free survival (DFS). Twenty patients were evaluable for safety and 17 for efficacy. The ORR was 11.8%, and 24-month DFS probability was 88·0% (95% CI 61.0 to 97.0). There were no grade 4/5 treatment-related adverse events. Sitravatinib PK did not change following the addition of nivolumab. Correlative blood and tissue analyses showed changes in the tumour microenvironment resulting in an immunologically active tumour by the time of surgery (median time-to-surgery: 50 days). The primary endpoint of this study was not met as short-term neoadjuvant sitravatinib and nivolumab did not substantially increase ORR
    • 

    corecore