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An understanding of the environmental toxicology of ionizing radiation (IR) is needed

because nuclear power production is expanding and there is increasing pressure to

build nuclear waste repositories. The effects of IR in the environment have long been

investigated but there have been fewer studies involving environmental microbiology

than its importance to key ecosystems services demands. Here, we highlight some

unique aspects of the relationship between microbes and IR and use them to suggest an

extended dose–response model. At high doses, IR causes DNA damage and oxidative

stress but some microbes have a remarkable capacity for DNA repair and are tolerant

of oxidative stress. Not only is significant radioresistance increasingly being reported for

microbes, but some microbes are even radiotrophic. The stressful radiative environment

of the early Earth might help explain the existence of these traits, which challenge the

assumptions of current dose response models for IR. We suggest that a perspective that

takes into account these traits plus both dose and dose rate can be used to model an

“effects landscape” that might provide insights for the environmental toxicology of IR to

microbes. This might help to predict the effects of IR on key ecosystem processes and

also be useful in understanding the environmental toxicology of IR in general.

Keywords: ionizing radiation, microorganisms, environmental toxicology, dose–response model, ecosystem

processes

INTRODUCTION

Nuclear power is seen as a low-carbon alternative to fossil fuel-derived energy but its use brings
potential for both chronic and acute inputs of radionuclides to the environment. Although a variety
of levels of radioactivity occurs naturally, accidental releases of short and long-lived radionuclides
into the environment are an emotive and, given a globally expanding nuclear industry, topical issue.
Further, the vast majority of nuclear waste ever generated is currently kept in temporary storage
so there is significant pressure to construct permanent nuclear waste repositories for high level
radioactive waste in particular (Sanders and Sanders, 2016). The effects of IR on microorganisms in
the near-environment of waste repositories can be very important to their functioning and its effects
further afield can be important to understanding the impacts that any IR entering the environment
might have. Studies have, for several decades, investigated the ecological impacts that releases of
radionuclides to the environment can have on a range of plants and animals (e.g., Geras’kin, 2016)
and also explored the effects of low doses in various microorganisms (Paul et al., 2012; Tomac and
Yeannes, 2012;Mesquita et al., 2013; Xavier et al., 2014) but their impact on soil and root-associated
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microorganisms, and the key ecosystem processes they regulate,
is less well understood. One of themost important sources of data
on the environmental impacts of accidental releases of IR is the
Chernobyl “Exclusion Zone” (CEZ), which has served as a natural
laboratory since the accident in April 1986. Investigations at this
site have paid less attention to the effects of IR on microbes than
on many other groups of organisms, but laboratory experiments
reveal complex responses of microorganisms to IR, particularly
the mechanisms that enable some microbes to resist damage. In
addition, analysis of natural variation in radioactivity is providing
insights into how low doses of radiation affect mutation rates and
evolution (Møller and Mousseau, 2013).

This article highlights progress in the environmental
toxicology of IR for microorganisms using three themes;
the effects of IR on microbial DNA and redox poise, the
adaptive responses of microbial populations to IR, and the
implications for key ecosystem processes of IR effects on
microorganisms. It is suggested that the major challenge for
understanding the environmental toxicology of microbial
response to IR is to integrate these three themes. To achieve
this the current understanding of the responses of individual
species of microorganisms to IR needs to be complemented by
a greater focus on community-level and functional responses
of microorganisms to IR. This is necessary for understanding
the effects of IR on microbially-mediated plant-soil feedbacks
and biogeochemical cycling. To facilitate such a synthesis, a new
perspective on dose–response is proposed for investigating the
toxicological impacts of IR, for which microorganisms provide a
unique test but which might also be useful for other organisms.

DNA DAMAGE AND OXIDATIVE STRESS IN
MICROBES DURING EXPOSURE TO IR

High dose exposure of living cells to IR causes significant changes
to essential biomolecules, such as DNA, and can trigger oxidative
stress resulting in mutations and other defects. Eukaryotic and
prokaryotic models have been used to study the effects of high
dose IR on DNA damage and repair mechanisms. This has
revealed distinct types of DNA damage by IR; single strand
breaks, double strand breaks, and radiation-induced bystander
effects (Han and Yu, 2010). Unusually for living cells, some
bacteria are radioresistant because they have significant capacity
to repair IR-induced DNA damage and to minimize IR-induced
oxidative stress—a processs thought to be mediated by the
accumulation of manganese complexes that prevent protein
oxidation (Daly, 2009). IR-resistant bacteria are, increasingly,
being isolated and sequenced from a variety of environments
(Singh et al., 2013; Kim et al., 2015; Srinivasan et al., 2015; Deng
et al., 2016; Ruiz-González et al., 2016).

The proportion of microbial communities that are
radioresistant is unknown, and this makes it difficult to
predict the impact of accidental releases of IR on ecosystems. In
soils, exposure to UV radiation, which is non-ionizing but can
also cause DNA damage and oxidative stress, can affect microbial
community composition and decomposition (Wang et al., 2015),
which suggests that resistance to damaging radiation is not

ubiquitous. At low chronic doses of IR, such as those that occur
in radioactively contaminated environments, there is currently
a particular lack of toxicological consensus about the effects of
IR on organisms. On the one hand, mechanistic calculations
show that direct oxidative stress is not likely to be caused by
chronic low doses of radiation (Smith et al., 2012) whilst some
field studies suggest chronic low doses of IR affect the fitness
of, for example, small mammals (Lehmann et al., 2016). It has
even been suggested that variation in naturally-occurring levels
of radioactivity can affect immune function, mutation, and
disease in animals and plants (Møller and Mousseau, 2013). For
microbes in particular, there is significant scope for improving
our understanding of environmental toxicology of IR at chronic
low doses, with estimates of the occurrence of radioresistance
perhaps being particularly important.

ADAPTATION OF MICROBIAL
POPULATIONS TO RADIOACTIVE
ENVIRONMENTS

Microbial populations often have rapid growth rates and mixed
gene swapping abilities that enable them to evolve rapidly and
adapt to environmental challenges (DeLong, 2012). There are
examples of microbial species, such as Deinococcus radiodurans
and Cryptococcus neoformans, that are adapted to highly
radioactive environments (Cox and Battista, 2005; Zivanovic
et al., 2009) and of melanin synthesizing fungi that have a greater
ability to tolerate radioactivity than those that do not (Dadachova
and Casadevall, 2008). Selection experiments have found that
irradiation of Escherichia coli cells (up to 50 rounds) led to
highly radio-resistant populations, and their genomic sequences
unveiled nine genes prone to mutations (Harris et al., 2009;
Byrne et al., 2014). The roles of these nine genes include copying
and repairing DNA sequences, decreasing the damage caused by
reactive oxygen species (ROS), and manufacturing the molecular
wall that shields the cells. When specific mutations from the
evolved population of E.coli (radio-resistant to repair genes) were
inserted into original repair genes, the cells developed resistance,
and in contrast, the evolved radio-resistant E.coli cells became
less resistant to radiation upon insertion of the original genes. In
natural ecosystems, in which microorganisms are subjected to a
plethora of parameters that affect their evolution (DeLong, 2012;
Denef and Banfield, 2012), various exposure times and doses of
IR have probably triggered the evolution of resistance to IR in
some populations and it is also clear that some microorganisms
can adapt to utilize IR in contaminated environments.

ECOSYSTEM PROCESSES AND THE
EFFECTS OF IR ON MICROORGANISMS

As the main drivers for litter decomposition and nutrient
cycling, microorganisms play key roles in ecosystem processes,
and they also form widespread symbioses with plants (e.g.,
mycorrhizal fungi and N fixing bacteria) that are crucial for
plant growth, nutrition and fitness. There is evidence that
the rate of litter decomposition has decreased in the CEZ,
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which can lead to increased risk of fire and re-release of
contaminated material to the atmosphere (Mousseau et al.,
2014). Mycorrhizal fungi can affect the uptake of radionuclides
by plants (Vinichuk et al., 2013), but the impact of IR on
the diversity and function of the fungi themselves is poorly
studied, despite their ecological importance. The extent of
colonization of plant roots by arbuscular mycorrhizal fungi
can be reduced in response to radioactivity (Jones et al., 2004,
Kothamasi et al., 2016). Radiation exposure also affects other
soil microorganisms with key roles in ecosystem functioning: the
sensitivity of ammonia oxidizing bacteria to gamma radiation
appears to be associated with the lack of re-establishment of trees
in contaminated soils (Shah et al., 2013). These studies suggest
that exposure to IR has potential for wide-ranging impacts on
ecosystem functioning. There is, however, no overall framework
to help clarify the environmental toxicology of IR effects on
microorganisms.

AN EXTENDED DOSE–RESPONSE MODEL
OF THE EFFECTS OF IONIZING RADIATION

Microorganisms and the Linear
Non-threshold Dose–Response Model
Humans have been the focus of radiological protection for
many decades and it is only in recent years that legislation to
protect flora and fauna has begun to develop (ICRP, 2007). The
International Commission for Radiological Protection (ICRP)
in 1977 and 1991 concluded that if humans were adequately
protected from the effects of IR then other organisms would
be too (ICRP, 1977, 1991). ICRP 103 (ICRP, 2007) recognized
the importance of protecting the environment and introduced
the concept of reference animals and plants. This concept
acknowledges that there may be some differences between the
effects of IR on a range of organisms but excludes microbes. The
Miami Consenus Symposium 2015 derived seven statements to
address the ecological effects of radiation on populations and
ecosystems and yet there has been scant focus on radiological
protection for microorganisms (Bréchignac et al., 2016). This is
important when the recent data outlined above suggests that the
effects of IR on microbial populations is not the same as the
effects on populations of other organisms.

The assumption of a linear non-threshold (LNT) dose
response to IR (Figure 1) has, since its inception, underpinned
radiological protection of humans and is widely assumed
when discussing other organisms, including reference animals
and plants. However, there are generally thresholds in effects
of naturally occurring environmental stressors on organisms
because homeostatic systems provide a buffer against low
intensity variation (cf. Willey, 2016). For microorganisms, in
which the effects of IR are most appropriately discussed at the
population or community level, the existence of radioresistant
populations of bacteria and fungi suggest that thresholds for
effects might be particularly important (Figure 1) but they have
seldom been tested. Further, there are clearly microorganisms
that are not only resistant to low level exposure to IR but are
adapted to take advantage of it, which is likely to produce a

FIGURE 1 | Possible dose–response curves for ionizing radiation and

microorganisms. For radiological protection purposes, especially for

humans, the linear non-threshold response is general assumed. For most

organisms, and particularly for microorganisms living at current background

and for which population and community effects might be of most relevance,

we hypothesize that there are thresholds below which significant effects are

not observed. In fact, the survival of some microorganisms at high dose rates

of IR and the capture of energy from IR by others, suggests that hormetic

dose responses are also possible.

hormetic dose response (Figure 1). These phenomena suggest
that, at least for some microorganisms, our understanding of the
environmental toxicology of IR could be improved by extending
the LNT model.

For humans the LNT dose–response has a long history of
successful use in radiological protection because it is simple
and conservative. It assumes that effects are a product of
total dose received and that there is no dose that does not
produce an effect. It has frequently been pointed out that
both of these assumptions can be questioned scientifically. For
the first, given that biological systems take time to react to
environmental insult, there are short-term high dose rates at
which even relatively small total doses can produce effects.
The corollary of this is that there are low dose rates which, if
delivered for protracted periods, ultimately provide large total
doses but have no effects because organisms can adjust to them.
The effects of IR are, therefore, a product not just of total
dose but also of dose rate. As regards the second assumption,
on the early Earth the background β/γ radiation was several
times higher than it is at present (Karam and Leslie, 1999),
and before the formation of the ozone layer the effects of
UV-B and UV-C (which at its shortest wavelengths is weakly
ionizing) were significant. Mean global current background
ionizing radiation dose rates are approximately 3 mGy y−1,
which is the lowest background dose rate to which life has
ever been exposed. Given the ancient history and adaptability
of archaea, bacteria and fungi in particular, and the presence
of extant radioresistant microbes, it is appropriate to suggest
that there are low dose rates to which they at least are resistant
and that have no effects. We suggest, therefore, that both total
dose and dose rate should be considered in dose–response
models for use in environmental toxicology and that it is
appropriate to suggest that there is a threshold for effects on
microorganisms.
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Extending the Linear Non-threshold
Dose–Response
Several theoretical improvements, ultimately based on “target
theory,” of the LNT model have been suggested (e.g., Manabe
et al., 2015; Seong et al., 2016). These models aimed to provide
better descriptions of the relationship between dose and effect,
with the model of Manabe et al. in particular emphasizing the
importance of dose-rate dependence at low doses by summing
low dose and high dose components. Although not necessarily
more useful for the purposes of radiological protection than the
LNT dose–response, such improvements seem likely to more
nearly reflect the relationship between dose and effect.

We propose, however, that given that both dose and dose rate
are relevant to the effects produced, effects should be modeled
as, mathematically, a function of them. Thus, effects might
be described by a three dimensional landscape dependent on
both total dose and dose rate (Figure 2A). This is a conceptual
framework widely used, for example, to describe the effects
of two interlinked factors (energy and chemical conditions)
on protein conformation (Hartl and Hayer-Hartl, 2009). The
recent mathematical advances in describing dose–response (e.g.,
Manabe et al., 2015; Seong et al., 2016) might provide a basis
for establishing which functions might be appropriate for a
mathematical model of the landscape. An alternative, however,
might be gathering or collating data informed by the parameters
of the landscape perspective in order to provide an empirical
description of it. For microorganisms, the landscape perspective
we propose predicts that there might be a no effects area
(i.e., a threshold for effects) at low doses, and a maximum of

effects at particularly high dose rates because there are dose
rates known to be sterilizing (Figure 2B). Effects of IR in the
environmental toxicology literature are frequently discussed as
a product of either “low dose” or “high dose.” We suggest that
this binary division is simplistic and should be replaced with a
landscape of effects whose topology should be, by mathematical
and/or empirical methods, the focus of environmental toxicology
research for microorganisms at least.

Implications for the Environmental
Toxicology of Microorganisms
Investigations to probe the topology of an IR effects landscape
are likely to be particularly important for microorganisms. For
investigations of effects the early conditions for life, which for at
least its first 2.5 billion years was entirely microbial, are relevant.
Microbial interactions with UV were a significant factor in early
evolution, and the effects of UV are often linked to those of IR
(Evans, 1991). The primary effects of UV on organisms occur
because some key biomolecules, primarily DNA and proteins,
strongly absorb radiation in the UV range which can result in
their structural alteration and photoionization. DNA damage
from the absorption of UV likely provoked the evolution of
early DNA repair mechanisms. Together with the existence of
radioresistant microorganisms, this suggests that there is likely to
be, at a population level at least, a no-effects threshold for DNA
damage on the effects landscape because microorganisms must
be able to cope with it. As far as oxidative stress is concerned,
the ionization energy for water is such that only UV radiation
with a wavelength below 100 nm is ionizing. UV radiation with

FIGURE 2 | An extended dose–response model for the effects of IR on microorganisms. (A) The total dose produced by the product of dose rate and

exposure time to IR (log10 axes). (B) A conceptual landscape for the effects of IR on microorganisms assuming that there is not a direct linear relationship between

exposure and effects but that there are thresholds in both dose rate and exposure time below which there are no significant effects, and that at high dose rates there

are effects that microorganisms have particular difficulty in adapting to. The gray area represents the no effects region and in some instances perhaps even a positive

effects region. There is a ceiling on effects because there are very high doses of IR that are sterilizing, i.e., kill essentially all microorganisms. (C) Potential relationship

of the effects landscape to IR in the environment. Given the evolutionary exposure to higher background radiation than exists now, plus exposure to UV and to other

stressors it is likely that current background has no significant effects on microorganisms, and perhaps that a dose rate somewhat above current background has no

effect. At Chernobyl, the highest dose rates during the accident clearly had significant effects and subsequently in the CEZ (shown in red) the highest doses are in the

range where effects are possible but for microorganisms, and many other organisms, the precise relationship between the exposures in the CEZ and the effects

landscape are not yet clear.

Frontiers in Environmental Science | www.frontiersin.org 4 February 2017 | Volume 5 | Article 6

http://www.frontiersin.org/Environmental_Science
http://www.frontiersin.org
http://www.frontiersin.org/Environmental_Science/archive


Siasou et al. Microbial Response to Ionizing Radiation

this wavelength is not a significant proportion of UV currently
arriving at the Earth’s surface but it has been more significant in
the past (Cockell, 2002).

UV’s oxidative effects are, however, primarily produced by
photoactivated and photoionised biomolecules reacting with
water to produce ROS (Pattinson and Davies, 2006) rather
than by direct radiolysis of water. The amount of oxidizing
radicals from UV to which ancient microbes had to adapt is
orders of magnitude greater than those produced by IR-induced
radiolysis at doses likely to occur in the environment (Smith et al.,
2012), so we hypothesize that a threshold for oxidative effects
IR exists for microorganisms because they are pre-adapted to
withstand the limited oxidizing effects of IR at environmentally
relevant dose rates. This suggests that there are doses, including
chronic low doses, which are unlikely to have adverse effects
on at least some microbial populations. The key ecosystem
processes that microbes regulate are sensitive to changes in
population structure, and the existence of radioresistance in some
microbes might increase the variation in microbial response,
so investigations at these dose rates might be important for
understanding the environmental toxicology of IR.

At the high dose rate/total dose part of the effects landscape,
direct damage of DNA becomes pronounced because double
stranded DNA breaks, which are a frequent result of exposure
to IR, are generally difficult for organisms to repair with high
fidelity. As DNA repair takes time, there comes a point where
the rate of DNA damage is fatal, producing a shelf on the
effects landscape. D. radiodurans is an extreme example how
some microorganisms can reconstitute a genome fractured by IR
but many other microbes are not so radioresistant, supporting
the need to better describe the topology of this part of the
effects landscape (Figure 2). This suggests that high doses of IR,
including high doses during accidents, might have significant
effects on the structure of microbial populations. Extremely high

doses may be fatal to some microbial populations, and thus be
sterilizing, but high doses might also lead in some instances
to a change microbial population structure. Overall, a simple
linear dose–response perspective is unlikely to be useful for
understanding the effects of IR on microbial populations and
hence on key ecosystem processes.

CONCLUSION

Until an effects landscape model is properly conceptualized and
tested for the effects of IR on microorganisms, it is unlikely
that it will be possible to make good predictions of the effects
of IR on microorganisms, at species and population levels, and
therefore on key ecosystem processes. Such knowledge will lead
to better predictive understanding of how accidental releases of
radionuclides affect the natural environment and the ecosystem
services it provides. Microbes provide a unique opportunity to
test all aspects of such a model, including the possibility of
adaptation at the population during significant exposure to IR,
which could have implications not just for microorganisms but
also for flora, fauna, and ecosystems.
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