10 research outputs found

    Integrating Oral Health Care into Primary Health Care System

    Get PDF
    Introduction. Systematic evaluation is an integral part of the organization and delivery of community oral health care programmes, ensuring the effectiveness of these community-based interventions. This study aimed to assess the knowledge and practice of primary health care (PHC) personnel regarding their duties toward oral health. Methods and Material. A cross-sectional study was carried out among three groups of PHC personnel in the city of Kerman (Iran). Volunteer personnel completed a piloted questionnaire which included demographic data, some question regarding their knowledge about oral health, their duties and also their practice regarding public oral health. All data were analyzed using chi-square and Pearson correlation test. Results. One hundred and fifty-seven out of 225 eligible personnel participated in the study. Sixty percent were auxiliary health workers (Behvarz). All personnel had a good level of knowledge regarding oral health. Despite significant differences among the knowledge of the personnel toward oral health, there was no significant difference between their knowledge related to their duties regarding oral health. The auxiliary health worker group had a higher rate (45.6%) for better public oral health practice. Conclusion. The study showed the personnel have good knowledge of their duties regarding oral health. However, their practice is not in line with their knowledge and needs more attention

    Governance of Excellence Criteria Based on EFQM Model

    No full text
    In progressing towards excellence, many barriers and problems appear which reveal the importance of self-assessment. One of the popular models of self-assessment is the excellence model of EFQM. In this study, the attitude of managers and personnel towards excellence criteria has been examined in order to measure the extent of excellence criteria governance. The main hypothesis of this research is: “there is a significant difference between the scores of current and desirable status of the excellence criteria in the company”. This hypothesis has been separated into a number of sub-hypotheses. The statistical population of the research includes 157 respondents including managers, supervisors and staff of company out of which, 112 individuals have been selected randomly. All hypotheses except the second, the third, and the eighth (related to policy and strategy, resources and partners and society results) have been confirmed at 95% level of confidence. Furthermore, data analysis and research findings have revealed those areas which need improvement

    The Effect of Magnetic Field on Thermal-Reaction Kinetics of a Paramagnetic Metal Hydride Storage Bed

    No full text
    A safe and efficient method for storing hydrogen is solid state storage through a chemical reaction in metal hydrides. A good amount of research has been conducted on hydrogenation properties of metal hydrides and possible methods to improve them. Background research shows that heat transfer is one of the reaction rate controlling parameters in a metal hydride hydrogen storage system. Considering that some very well-known hydrides like lanthanum nickel (LaNi5) and magnesium hydride (MgH2) are paramagnetic materials, the effect of an external magnetic field on heat conduction and reaction kinetics in a metal hydride storage system with such materials needs to be studied. In the current paper, hydrogenation properties of lanthanum nickel under magnetism were studied. The properties which were under consideration include reaction kinetics, hydrogen absorption capacity, and hydrogenation time. Experimentation has proven the positive effect of applying magnetic fields on the heat conduction, reaction kinetics, and hydrogenation time of a lanthanum nickel bed. However, magnetism did not increase the hydrogenation capacity of lanthanum nickel, which is evidence to prove that elevated hydrogenation characteristics result from enhanced heat transfer in the bed

    Association of amino acid metabolites with osteoporosis, a metabolomic approach: Bushehr elderly health program

    No full text
    Amino acids are the most frequently reported metabolites associated with low bone mineral density (BMD) in metabolomics studies. We aimed to evaluate the association between amino acid metabolic profile and bone indices in the elderly population. Methods 400 individuals were randomly selected from 2384 elderly men and women over 60 years participating in the second stage of the Bushehr elderly health (BEH) program, a population-based prospective cohort study that is being conducted in Bushehr, a southern province of Iran. Frozen plasma samples were used to measure 29 amino acid and derivatives metabolites using the UPLC-MS/MS-based targeted metabolomics platform. We conducted Elastic net regression analysis to detect the metabolites associated with BMD of different sites and lumbar spine trabecular bone score, and also to examine the ability of the measured metabolites to differentiate osteoporosis. Results We adjusted the analysis for possible confounders (age, BMI, diabetes, smoking, physical activity, vitamin D level, and sex). Valine, leucine, isoleucine, and alanine in women and tryptophan in men were the most important amino acids inversely associated with osteoporosis (OR range from 0.77 to 0.89). Sarcosine, followed by tyrosine, asparagine, alpha aminobutyric acid, and ADMA in women and glutamine in men and when both women and men were considered together were the most discriminating amino acids detected in individuals with osteoporosis (OR range from 1.15 to 1.31). Conclusion We found several amino acid metabolites associated with possible bone status in elderly individuals. Further studies are required to evaluate the utility of these metabolites as clinical biomarkers for osteoporosis prediction and their effect on bone health as dietary supplements

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    No full text
    BackgroundEstimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period.Methods22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution.FindingsGlobal all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations.InterpretationGlobal adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
    corecore