153 research outputs found

    Differing clinical features between Japanese and Caucasian patients with myelodysplastic syndromes:Analysis from the International Working Group for Prognosis of MDS

    Get PDF
    Clinical features of myelodysplastic syndromes (MDS) could be influenced by many factors, such as disease intrinsic factors (e.g., morphologic, cytogenetic, molecular), extrinsic factors (e.g, management, environment), and ethnicity. Several previous studies have suggested such differences between Asian and European/USA countries. In this study, to elucidate potential differences in primary untreated MDS between Japanese (JPN) and Caucasians (CAUC), we analyzed the data from a large international database collected by the International Working Group for Prognosis of MDS (300 and 5838 patients, respectively). JPN MDS were significantly younger with more severe cytopenias, and cytogenetic differences: less del(5q) and more +1/+1q, -1/del(1p), der(1;7), -9/del(9q), del(16q), and del(20q). Although differences in time to acute myeloid leukemia transformation did not occur, a significantly better survival in JPN was demonstrated, even after the adjustment for age and FAB subtypes, especially in lower, but not in higher prognostic risk categories. Certain clinical factors (cytopenias, blast percentage, cytogenetic risk) had different impact on survival and time to transformation to leukemia between the two groups. Although possible confounding events (e.g., environment, diet, and access to care) could not be excluded, our results indicated the existence of clinically relevant ethnic differences regarding survival in MDS between JPN and CAUC patients. The good performance of the IPSS-R in both CAUC and JP patients underlines that its common risk model is adequate for CAUC and JP

    Variants in ADRB1 and CYP2C9: Association with Response to Atenolol and Losartan in Marfan Syndrome

    Get PDF
    Objective: To test whether variants in ADRB1 and CYP2C9 genes identify subgroups of individuals with differential response to treatment for Marfan syndrome through analysis of data from a large, randomized trial. Study design: In a subset of 250 white, non-Hispanic participants with Marfan syndrome in a prior randomized trial of atenolol vs losartan, the common variants rs1801252 and rs1801253 in ADRB1 and rs1799853 and rs1057910 in CYP2C9 were analyzed. The primary outcome was baseline-adjusted annual rate of change in the maximum aortic root diameter z-score over 3 years, assessed using mixed effects models. Results: Among 122 atenolol-assigned participants, the 70 with rs1801253 CC genotype had greater rate of improvement in aortic root z-score compared with 52 participants with CG or GG genotypes (Time × Genotype interaction P = .005, mean annual z-score change ± SE -0.20 ± 0.03 vs -0.09 ± 0.03). Among participants with the CC genotype in both treatment arms, those assigned to atenolol had greater rate of improvement compared with the 71 of the 121 assigned to losartan (interaction P = .002; -0.20 ± 0.02 vs -0.07 ± 0.02; P < .001). There were no differences in atenolol response by rs1801252 genotype or in losartan response by CYP2C9 metabolizer status. Conclusions: In this exploratory study, ADRB1-rs1801253 was associated with atenolol response in children and young adults with Marfan syndrome. If these findings are confirmed in future studies, ADRB1 genotyping has the potential to guide therapy by identifying those who are likely to have greater therapeutic response to atenolol than losartan

    Global assessment of marine plastic exposure risk for oceanic birds

    Get PDF
    Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species

    Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria

    Get PDF
    Abstract: Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher risk of kidney disease progression and cardiovascular events, but underlying mechanisms are incompletely understood. Here, we conduct trans-ethnic (n = 564,257) and European-ancestry specific meta-analyses of genome-wide association studies of UACR, including ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic correlation analyses and risk score associations in an independent electronic medical records database (n = 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues and plasma protein levels implicate genes potentially operating through differential expression in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs slit diaphragm formation. These results generate a priority list of genes and pathways for translational research to reduce albuminuria

    Comparative Genomics of Plant-Associated Pseudomonas spp.: Insights into Diversity and Inheritance of Traits Involved in Multitrophic Interactions

    Get PDF
    We provide here a comparative genome analysis of ten strains within the Pseudomonas fluorescens group including seven new genomic sequences. These strains exhibit a diverse spectrum of traits involved in biological control and other multitrophic interactions with plants, microbes, and insects. Multilocus sequence analysis placed the strains in three sub-clades, which was reinforced by high levels of synteny, size of core genomes, and relatedness of orthologous genes between strains within a sub-clade. The heterogeneity of the P. fluorescens group was reflected in the large size of its pan-genome, which makes up approximately 54% of the pan-genome of the genus as a whole, and a core genome representing only 45–52% of the genome of any individual strain. We discovered genes for traits that were not known previously in the strains, including genes for the biosynthesis of the siderophores achromobactin and pseudomonine and the antibiotic 2-hexyl-5-propyl-alkylresorcinol; novel bacteriocins; type II, III, and VI secretion systems; and insect toxins. Certain gene clusters, such as those for two type III secretion systems, are present only in specific sub-clades, suggesting vertical inheritance. Almost all of the genes associated with multitrophic interactions map to genomic regions present in only a subset of the strains or unique to a specific strain. To explore the evolutionary origin of these genes, we mapped their distributions relative to the locations of mobile genetic elements and repetitive extragenic palindromic (REP) elements in each genome. The mobile genetic elements and many strain-specific genes fall into regions devoid of REP elements (i.e., REP deserts) and regions displaying atypical tri-nucleotide composition, possibly indicating relatively recent acquisition of these loci. Collectively, the results of this study highlight the enormous heterogeneity of the P. fluorescens group and the importance of the variable genome in tailoring individual strains to their specific lifestyles and functional repertoire

    Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels.

    Get PDF
    Elevated serum urate levels cause gout and correlate with cardiometabolic diseases via poorly understood mechanisms. We performed a trans-ancestry genome-wide association study of serum urate in 457,690 individuals, identifying 183 loci (147 previously unknown) that improve the prediction of gout in an independent cohort of 334,880 individuals. Serum urate showed significant genetic correlations with many cardiometabolic traits, with genetic causality analyses supporting a substantial role for pleiotropy. Enrichment analysis, fine-mapping of urate-associated loci and colocalization with gene expression in 47 tissues implicated the kidney and liver as the main target organs and prioritized potentially causal genes and variants, including the transcriptional master regulators in the liver and kidney, HNF1A and HNF4A. Experimental validation showed that HNF4A transactivated the promoter of ABCG2, encoding a major urate transporter, in kidney cells, and that HNF4A p.Thr139Ile is a functional variant. Transcriptional coregulation within and across organs may be a general mechanism underlying the observed pleiotropy between urate and cardiometabolic traits.The Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of the Office of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS. Variant annotation was supported by software resources provided via the Caché Campus program of the InterSystems GmbH to Alexander Teumer

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio
    corecore