26 research outputs found
Desarrollo de herramientas para gestionar los riesgos profesionales en las empresas y reducir la posibilidad de amenazas a la salud de los empleados
En el control de las organizaciones por parte de las autoridades ejecutivas, se presta especial atención a la disponibilidad de documentos relacionados con la evaluación de los riesgos profesionales. Uno de estos documentos es el registro de riesgos identificados para cada profesión. El trabajo contempla la elaboración de un registro estándar utilizando el ejemplo de un operador de aparatos de pasteurización y refrigeración de leche. La elección de una profesión se basa en la evaluación de los accidentes ocurridos en la empresa -la mayoría de ellos relacionados con esta profesión- y en una variada lista de peligros que surgen en el transcurso del proceso tecnológico y el desempeño de las funciones laborales. El registro elaborado contiene los peligros identificados, agrupados en categorías según la fuente primaria de peligro: mecánicos, térmicos, eléctricos, asociados al microclima, de naturaleza química y biológica, asociados a los aerosoles de acción fibrogénica, al ruido, a las vibraciones, a la iluminación de la zona de trabajo, a la gravedad e intensidad del trabajo, al proceso, al transporte, al fuego y a la explosión. El modelo de registro forma parte de la normativa sobre el sistema de gestión de la SST en la empresa. Puede utilizarse del mismo modo que las instrucciones estándar de SST. La lista de peligros identificados se aplica a la mayoría de las ocupaciones del taller. Los registros tipo reducirán el tiempo dedicado a su elaboración en la organización
Polygenic overlap with body-mass index improves prediction of treatment-resistant schizophrenia
Treatment resistant schizophrenia (TRS) is characterized by repeated treatment failure with antipsychotics. A recent genome-wide association study (GWAS) of TRS showed a polygenic architecture, but no significant loci were identified. Clozapine is shown to be the superior drug in terms of clinical effect in TRS; at the same time it has a serious side effect profile, including weight gain. Here, we sought to increase power for genetic discovery and improve polygenic prediction of TRS, by leveraging genetic overlap with Body Mass Index (BMI). We analysed GWAS summary statistics for TRS and BMI applying the conditional false discovery rate (cFDR) framework. We observed cross-trait polygenic enrichment for TRS conditioned on associations with BMI. Leveraging this cross-trait enrichment, we identified 2 novel loci for TRS at cFDR <0.01, suggesting a role of MAP2K1 and ZDBF2. Further, polygenic prediction based on the cFDR analysis explained more variance in TRS when compared to the standard TRS GWAS. These findings highlight putative molecular pathways which may distinguish TRS patients from treatment responsive patients. Moreover, these findings confirm that shared genetic mechanisms influence both TRS and BMI and provide new insights into the biological underpinnings of metabolic dysfunction and antipsychotic treatment.publishedVersio
Contributions and perspectives of Indigenous Peoples to the study of mercury in the Arctic
Arctic Indigenous Peoples are among the most exposed humans when it comes to foodborne mercury (Hg). In response,
Hg monitoring and research have been on-going in the circumpolar Arctic since about 1991; this work has been mainly
possible through the involvement of Arctic Indigenous Peoples. The present overview was initially conducted in the
context of a broader assessment of Hg research organized by the Arctic Monitoring and Assessment Programme.
This article provides examples of Indigenous Peoples' contributions to Hg monitoring and research in the Arctic, and
discusses approaches that could be used, and improved upon, when carrying out future activities. Over 40 mercury
projects conducted with/by Indigenous Peoples are identified for different circumpolar regions including the U.S.,
Canada, Greenland, Sweden, Finland, and Russia as well as instances where Indigenous Knowledge contributed to
the understanding of Hg contamination in the Arctic. Perspectives and visions of future Hg research as well as recommendations are presented. The establishment of collaborative processes and partnership/co-production approaches
with scientists and Indigenous Peoples, using good communication practices and transparency in research activities,
are key to the success of research and monitoring activities in the Arctic. Sustainable funding for community-driven
monitoring and research programs in Arctic countries would be beneficial and assist in developing more research/
monitoring capacity and would promote a more holistic approach to understanding Hg in the Arctic. These activities
should be well connected to circumpolar/international initiatives to ensure broader availability of the information and
uptake in policy development
Genome-wide meta-analysis for Alzheimer's disease cerebrospinal fluid biomarkers
Amyloid-beta 42 (A beta 42) and phosphorylated tau (pTau) levels in cerebrospinal fluid (CSF) reflect core features of the pathogenesis of Alzheimer's disease (AD) more directly than clinical diagnosis. Initiated by the European Alzheimer & Dementia Biobank (EADB), the largest collaborative effort on genetics underlying CSF biomarkers was established, including 31 cohorts with a total of 13,116 individuals (discovery n = 8074; replication n = 5042 individuals). Besides the APOE locus, novel associations with two other well-established AD risk loci were observed; CR1 was shown a locus for A beta 42 and BIN1 for pTau. GMNC and C16orf95 were further identified as loci for pTau, of which the latter is novel. Clustering methods exploring the influence of all known AD risk loci on the CSF protein levels, revealed 4 biological categories suggesting multiple A beta 42 and pTau related biological pathways involved in the etiology of AD. In functional follow-up analyses, GMNC and C16orf95 both associated with lateral ventricular volume, implying an overlap in genetic etiology for tau levels and brain ventricular volume.Peer reviewe
New insights into the genetic etiology of Alzheimer's disease and related dementias
Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele
Genetic Overlap Between Alzheimer’s Disease and Bipolar Disorder Implicates the MARK2 and VAC14 Genes
Background: Alzheimer's disease (AD) and bipolar disorder (BIP) are complex traits influenced by numerous common genetic variants, most of which remain to be detected. Clinical and epidemiological evidence suggest that AD and BIP are related. However, it is not established if this relation is of genetic origin. Here, we applied statistical methods based on the conditional false discovery rate (FDR) framework to detect genetic overlap between AD and BIP and utilized this overlap to increase the power to identify common genetic variants associated with either or both traits. Methods: We obtained genome wide association studies data from the International Genomics of Alzheimer's Project part 1 (17,008 AD cases and 37,154 controls) and the Psychiatric Genetic Consortium Bipolar Disorder Working Group (20,352 BIP cases and 31,358 controls). We used conditional QQ-plots to assess overlap in common genetic variants between AD and BIP. We exploited the genetic overlap to re-rank test-statistics for AD and BIP and improve detection of genetic variants using the conditional FDR framework. Results: Conditional QQ-plots demonstrated a polygenic overlap between AD and BIP. Using conditional FDR, we identified one novel genomic locus associated with AD, and nine novel loci associated with BIP. Further, we identified two novel loci jointly associated with AD and BIP implicating the MARK2 gene (lead SNP rs10792421, conjunctional FDR=0.030, same direction of effect) and the VAC14 gene (lead SNP rs11649476, conjunctional FDR=0.022, opposite direction of effect). Conclusions: We found polygenic overlap between AD and BIP and identified novel loci for each trait and two jointly associated loci. Further studies should examine if the shared loci implicating the MARK2 and VAC14 genes could explain parts of the shared and distinct features of AD and BIP
Multiancestry analysis of the HLA locus in Alzheimer’s and Parkinson’s diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes
Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson’s disease (PD) and Alzheimer’s disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased Aβ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues
T7 phage protein Gp2 inhibits the Escherichia coli RNA polymerase by antagonizing stable DNA strand separation near the transcription start site
Infection of Escherichia coli by the T7 phage leads to rapid and selective inhibition of the host RNA polymerase (RNAP)—a multi-subunit enzyme responsible for gene transcription—by a small (∼7 kDa) phage-encoded protein called Gp2. Gp2 is also a potent inhibitor of E. coli RNAP in vitro. Here we describe the first atomic resolution structure of Gp2, which reveals a distinct run of surface-exposed negatively charged amino acid residues on one side of the molecule. Our comprehensive mutagenesis data reveal that two conserved arginine residues located on the opposite side of Gp2 are important for binding to and inhibition of RNAP. Based on a structural model of the Gp2-RNAP complex, we propose that inhibition of transcription by Gp2 involves prevention of RNAP-promoter DNA interactions required for stable DNA strand separation and maintenance of the “transcription bubble” near the transcription start site, an obligatory step in the formation of a transcriptionally competent promoter complex
Generalization of Cortical MOSTest Genome-Wide Associations Within and Across Samples
Genome-Wide Association studies have typically been limited to univariate analysis in which a single outcome measure is tested against millions of variants. Recent work demonstrates that a Multivariate Omnibus Statistic Test (MOSTest) is well powered to discover genomic effects distributed across multiple phenotypes. Applied to cortical brain MRI morphology measures, MOSTest has resulted in a drastic improvement in power to discover loci when compared to established approaches (min-P). One question that arises is how well these discovered loci replicate in independent data. Here we perform 10 times cross validation within 34,973 individuals from UK Biobank for imaging measures of cortical area, thickness and sulcal depth (>1,000 dimensionality for each). By deploying a replication method that aggregates discovered effects distributed across multiple phenotypes, termed PolyVertex Score (MOSTest-PVS), we demonstrate a higher replication yield and comparable replication rate of discovered loci for MOSTest (# replicated loci: 242-496, replication rate: 96-97%) in independent data when compared with the established min-P approach (# replicated loci: 26-55, replication rate: 91-93%). An out-of-sample replication of discovered loci was conducted with a sample of 4,069 individuals from the Adolescent Brain Cognitive Developmentࣨ (ABCD) study, who are on average 50 years younger than UK Biobank individuals. We observe a higher replication yield and comparable replication rate of MOSTest-PVS compared to min-P. This finding underscores the importance of using well-powered multivariate techniques for both discovery and replication of high dimensional phenotypes in Genome-Wide Association studies
Generalization of Cortical MOSTest Genome-Wide Associations Within and Across Samples
Genome-Wide Association studies have typically been limited to univariate analysis in which a single outcome measure is tested against millions of variants. Recent work demonstrates that a Multivariate Omnibus Statistic Test (MOSTest) is well powered to discover genomic effects distributed across multiple phenotypes. Applied to cortical brain MRI morphology measures, MOSTest has resulted in a drastic improvement in power to discover loci when compared to established approaches (min-P). One question that arises is how well these discovered loci replicate in independent data. Here we perform 10 times cross validation within 34,973 individuals from UK Biobank for imaging measures of cortical area, thickness and sulcal depth (>1,000 dimensionality for each). By deploying a replication method that aggregates discovered effects distributed across multiple phenotypes, termed PolyVertex Score (MOSTest-PVS), we demonstrate a higher replication yield and comparable replication rate of discovered loci for MOSTest (# replicated loci: 242–496, replication rate: 96–97%) in independent data when compared with the established min-P approach (# replicated loci: 26–55, replication rate: 91–93%). An out-of-sample replication of discovered loci was conducted with a sample of 4,069 individuals from the Adolescent Brain Cognitive Development® (ABCD) study, who are on average 50 years younger than UK Biobank individuals. We observe a higher replication yield and comparable replication rate of MOSTest-PVS compared to min-P. This finding underscores the importance of using well-powered multivariate techniques for both discovery and replication of high dimensional phenotypes in Genome-Wide Association studies