90 research outputs found

    A New Economic Dispatch for Coupled Transmission and Active Distribution Networks Via Hierarchical Communication Structure

    Get PDF
    Traditionally, the economic dispatch problem (EDP) of the bulk generators connected to transmission networks (TNs) is solved in a centralized dispatching center (CDC) while modeling distribution networks as passive loads. With the increasing penetration levels of distributed generation, coordinating the economic dispatch between TNs and active distribution networks (ADNs) became vital to maximizing system efficiency. This article proposes a hierarchical communication structure, which requires minimal upgrades to the CDC, for solving the EDP of coupled TNs and ADNs. Based on the minimal data transfer between the CDC and distribution network operators, the problem is formulated and solved while considering the network losses in both TNs and ADNs. Furthermore, a sensitivity analysis is conducted to assess the effect of the ratio of the distribution lines on the economic dispatch solution and the operational cost of the system. The numerical results demonstrate the effectiveness of the proposed centralized scheme and highlight the significance of considering the network losses of both TNs and ADNs when solving the EDP. The results show that the proposed framework can achieve savings of up to 17.98% by taking into account the network losses of TNs and ADNs

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    Technical and economic aspects of solar space heating in Turkey

    No full text
    A computer analysis of solar heating has been performed for Turkey. Results are presented for two prototype buildings using either fuel-oil or coal under different heating loads in three climatic regions (Antalya, Ankara and Kars). Cumulative cost flows are compared for the life-cycle present value technique. Optimum design magnitudes are determined for maximum life-cycle savings. The payback period for capital invested in a solar system, internal rate of return, and total savings are found for the optimum conditions. Variations of system performance are estimated. The effects of collector slope, proportionate storage tank volume, heat-exchanger parameters, and the design load on system performance are studied. Finally the economics of solar heating in Turkey are discussed and recommendations made for increased utilization of solar energy

    Optimal Operational Planning of RES and HESS in Smart Grids Considering Demand Response and DSTATCOM Functionality of the Interfacing Inverters

    No full text
    With countries moving toward renewable energy sources (RES), the need for dispatchability and storage solutions has become more prevalent. The uncertainty associated with wind turbine (WT) units and photovoltaic (PV) systems further complex a system with a high level of intermittency. This work addresses this problem by proposing an operational planning approach to determine the optimal allocation of WT units, PV systems, and hybrid energy storage systems (HESS) in smart grids. The proposed approach considers the uncertainties of the RES and load demand, price-based demand response, and distribution static compensator (DSTATCOM) functionality of the RES interfacing inverters. The operational planning problem is divided into two subcategories: (1) optimal long-term planning and (2) optimal operation. In the first problem, probabilistic models of RES and load reflect on the sizes and locations of the used RES and storage technologies. This allocation is further optimized via the optimal operation of the smart grid. The proposed operational planning approach is formulated as a nested optimization problem that guarantees the optimal planning and operation of the RES and HESS simultaneously. This approach is tested on the IEEE 33-bus distribution system and solved using meta-heuristic and mathematical algorithms. The effectiveness of the proposed approach is demonstrated using a set of case studies. The results demonstrate that the proposed approach optimally allocates the RES and HESS with a 30.4% cost reduction and 19% voltage profile improvement

    Optimal Sizing and Placement of Multiple Photovoltaics Considering Electric Vehicles Charging Stations

    No full text
    Due to the fluctuated generation of Photovoltaic (PV) and stochastic charging and discharging schemes of electric vehicles (EVs), risky operational issues are observed in the medium-voltage distribution systems. Expected issues are excessive energy losses, voltage drop and voltage rise, and disruptions of operational boundaries in power distribution systems. To tackle these issues, we propose an optimization planning model in this paper for optimally allocate PV to accommodate EV charging stations in distribution systems. The proposed planning approach has the ability to determine the best PV locations and sizes to reduce the electrical energy losses in the distribution system, considering voltage and power flow boundaries. Consequently, the allocation problem of PV is created as a double-layer optimization model, which is solved by the gravitational search algorithm. To indicate the effectiveness of the proposed allocation approach of PV, different simulations are performed in the IEEE 69-bus distribution system. The computed results demonstrate that the proposed planning approach can optimally allocate multiple PV units while satisfying the EV charging requirements.Peer reviewe

    A New Cooperative Game—Theoretic Approach for Customer-Owned Energy Storage

    No full text
    The increasing demand for energy storage systems (ESSs) alongside the continuous enhancements to storage technology have been of great positive impact on the electric grid. Their unceasing development has been driven by the need to accommodate increased penetration of renewable energy resources and defer capital investments, among other benefits. Moreover, ESSs have played a key role in the grid’s ability to cope with its ever-shifting load profiles, resulting in large economic gain for ESS owners. For this reason, this prospective study was designed to investigate privately-owned energy storage hubs (ESHs) and their interactions with potential customers as well as with the electric grid. This research examined two contrasting interaction approaches for customer-owned stationary energy storage hubs: a cooperative and a non-cooperative game-theoretic approach. The goal of the cooperative technique is to conduce to a correlated equilibrium increasing the social welfare of all players involved using a regret matching algorithm. On the other hand, in the non-cooperative approach, modeled as an ascending price-clinching auction, each player acts greedily, maximizing only their individual welfare. Implementing both case studies resulted in important insights into ESH players’ interactions and provided contrasting methods of modeling their behaviors. Finally, depending on the application at hand, the choice of one approach may be more realistic than the other

    Optimal Allocation of Distributed Generation Considering Protection

    No full text
    The integration of distributed generation (DG) into the power grid has increased in recent years due to its techno-economic benefits for utilities and consumers. However, due to the fact that distribution systems were not originally designed to accommodate such DG units, many challenges are being faced by utilities to seamlessly integrate them into their systems. One of the critical challenges is their effect on protection system settings and coordination. The DG units will affect the pickup current settings of the protection relays, coordination between the primary and secondary relays, and even the direction of the fault current. Failing to consider DG’s effect on the protection system may lead to serious equipment damage or system failure, causing huge financial setbacks for utilities. To that end, this work proposes a new dynamic approach to optimally allocate different types of DG units over the planning horizon. The objective is to minimize the overall costs of the system while taking into consideration the intermittent nature of renewable DG and the impacts on the protection system. Simulation results have been developed on a typical distribution system to prove the effectiveness of the proposed approach

    Enhancement of Dye Separation Performance of Eco-Friendly Cellulose Acetate-Based Membranes

    No full text
    Many reasons have caused a worldwide water stress problem. Thus, the recycling of wastewater streams has been extensively studied. In this work, eco-friendly mixed matrix membranes (MMMs) were fabricated, characterized, and tested for the removal of two separate dyes from simulated waste streams. The environmentally friendly nano activated carbon (NAC) was extracted from water hyacinth to be impregnated as a membrane nano-filler to enhance the neat membrane performance. The extracted NAC was further studied and characterized. Cellulose acetate (CA)-based membranes were obtained by phase inversion and electrospinning mechanisms. All four synthesized blank and MMMs were characterized via scanning electron microscope (SEM) and contact angle to study their structure and hydrophilic nature, respectively. However, the membrane with optimum performance was further characterized using Fourier transfer infrared (FTIR) and X-ray diffraction (XRD). The four prepared cast and electro-spun, blank, and mixed matrix CA-based membranes showed an acceptable performance in the removal and selectivity of methylene blue (MB) dye over Congo red (CR) dye with a removal percentage ranging from 31 to 70% depending on the membrane used. It was found that the CA/NAC hybrid nanofiber membrane possessed the highest removal efficiency for MB, where the dye concentration declined from 10 to 2.92 mg/L. In contrast, the cast blank CA membrane showed the least removal percentage among the synthesized membranes with only 30% removal. As a result, this paper suggests the use of the CA/NAC hybrid membrane as an alternative and cost-effective solution for MB dye removal
    corecore