15 research outputs found

    Entangling single atoms over 33 km telecom fibre

    Get PDF
    Quantum networks promise to provide the infrastructure for many disruptive applications, such as efcient long-distance quantum communication and distributed quantum computing1,2 . Central to these networks is the ability to distribute entanglement between distant nodes using photonic channels. Initially developed for quantum teleportation3,4 and loophole-free tests of Bell’s inequality5,6 , recently, entanglement distribution has also been achieved over telecom fbres and analysed retrospectively7,8 . Yet, to fully use entanglement over long-distance quantum network links it is mandatory to know it is available at the nodes before the entangled state decays. Here we demonstrate heralded entanglement between two independently trapped single rubidium atoms generated over fbre links with a length up to 33 km. For this, we generate atom–photon entanglement in two nodes located in buildings 400 m line-of-sight apart and to overcome high-attenuation losses in the fbres convert the photons to telecom wavelength using polarization-preserving quantum frequency conversion9 . The long fbres guide the photons to a Bell-state measurement setup in which a successful photonic projection measurement heralds the entanglement of the atoms10. Our results show the feasibility of entanglement distribution over telecom fbre links useful, for example, for device-independent quantum key distribution11–13 and quantum repeater protocols. The presented work represents an important step towards the realization of large-scale quantum network links

    Rab31 expression levels modulate tumor-relevant characteristics of breast cancer cells

    Get PDF
    BACKGROUND: Rab proteins constitute a large family of monomeric GTP-binding proteins that regulate intracellular vesicle transport. Several Rab proteins, including rab31, have been shown to affect cancer progression and are related with prognosis in various types of cancer including breast cancer. Recently, the gene encoding rab31 was found to be overexpressed in estrogen receptor-positive breast cancer tissue. In a previous study we found a significant association of high rab31 mRNA expression with poor prognosis in node-negative breast cancer patients. In the present study, we aimed to investigate the impact of rab31 (over)-expression on important aspects of tumor progression in vitro and in vivo. METHODS: Breast cancer cells displaying low (MDA-MB-231) or no (CAMA-1) endogenous rab31 expression were stably transfected with a rab31 expression plasmid. Batch-transfected cells as well as selected cell clones, expressing different levels of rab31 protein, were analyzed with regard to proliferation, cell adhesion, the invasive capacity of tumor cells, and in vivo in a xenograft tumor model. Polyclonal antibodies directed to recombinantly expressed rab31 were generated and protein expression analyzed by immunohistochemistry, Western blot analysis, and a newly developed sensitive ELISA. RESULTS: Elevated rab31 protein levels were associated with enhanced proliferation of breast cancer cells. Interestingly, weak to moderate overexpression of rab31 in cell lines with no detectable endogenous rab31 expression was already sufficient to elicit distinct effects on cell proliferation. By contrast, increased expression of rab31 in breast cancer cells led to reduced adhesion towards several extracellular matrix proteins and decreased invasive capacity through Matrigel(TM). Again, the rab31-mediated effects on cell adhesion and invasion were dose-dependent. Finally, in a xenograft mouse model, we observed a significantly impaired metastatic dissemination of rab31 overexpressing MDA-MB-231 breast cancer cells to the lung. CONCLUSIONS: Overexpression of rab31 in breast cancer cells leads to a switch from an invasive to a proliferative phenotype as indicated by an increased cell proliferation, reduced adhesion and invasion in vitro, and a reduced capacity to form lung metastases in vivo

    In vivo imaging of pancreatic tumours and liver metastases using 7 Tesla MRI in a murine orthotopic pancreatic cancer model and a liver metastases model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pancreatic cancer is the fourth leading cause of tumour death in the western world. However, appropriate tumour models are scarce. Here we present a syngeneic murine pancreatic cancer model using 7 Tesla MRI and evaluate its clinical relevance and applicability.</p> <p>Methods</p> <p>6606PDA murine pancreatic cancer cells were orthotopically injected into the pancreatic head. Liver metastases were induced through splenic injection. Animals were analyzed by MRI three and five weeks following injection. Tumours were detected using T2-weighted high resolution sequences. Tumour volumes were determined by callipers and MRI. Liver metastases were analyzed using gadolinium-EOB-DTPA and T1-weighted 3D-Flash sequences. Tumour blood flow was measured using low molecular gadobutrol and high molecular gadolinium-DTPA.</p> <p>Results</p> <p>MRI handling and applicability was similar to human systems, resolution as low as 0.1 mm. After 5 weeks tumour volumes differed significantly (p < 0.01) when comparing calliper measurments (n = 5, mean 1065 mm<sup>3</sup>+/-243 mm<sup>3</sup>) with MRI (mean 918 mm<sup>3</sup>+/-193 mm<sup>3</sup>) with MRI being more precise. Histology (n = 5) confirmed MRI tumour measurements (mean size MRI 38.5 mm<sup>2</sup>+/-22.8 mm<sup>2 </sup>versus 32.6 mm<sup>2</sup>+/-22.6 mm<sup>2 </sup>(histology), p < 0,0004) with differences due to fixation and processing of specimens. After splenic injection all mice developed liver metastases with a mean of 8 metastases and a mean volume of 173.8 mm<sup>3</sup>+/-56.7 mm<sup>3 </sup>after 5 weeks. Lymphnodes were also easily identified. Tumour accumulation of gadobutrol was significantly (p < 0.05) higher than gadolinium-DTPA. All imaging experiments could be done repeatedly to comply with the 3R-principle thus reducing the number of experimental animals.</p> <p>Conclusions</p> <p>This model permits monitoring of tumour growth and metastasis formation in longitudinal non-invasive high-resolution MR studies including using contrast agents comparable to human pancreatic cancer. This multidisciplinary environment enables radiologists, surgeons and physicians to further improve translational research and therapies of pancreatic cancer.</p

    Accuracy and inter-observer variability of 3D versus 4D cone-beam CT based image-guidance in SBRT for lung tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To analyze the accuracy and inter-observer variability of image-guidance (IG) using 3D or 4D cone-beam CT (CBCT) technology in stereotactic body radiotherapy (SBRT) for lung tumors.</p> <p>Materials and methods</p> <p>Twenty-one consecutive patients treated with image-guided SBRT for primary and secondary lung tumors were basis for this study. A respiration correlated 4D-CT and planning contours served as reference for all IG techniques. Three IG techniques were performed independently by three radiation oncologists (ROs) and three radiotherapy technicians (RTTs). Image-guidance using respiration correlated 4D-CBCT (IG-4D) with automatic registration of the planning 4D-CT and the verification 4D-CBCT was considered gold-standard. Results were compared with two IG techniques using 3D-CBCT: 1) manual registration of the planning internal target volume (ITV) contour and the motion blurred tumor in the 3D-CBCT (IG-ITV); 2) automatic registration of the planning reference CT image and the verification 3D-CBCT (IG-3D). Image quality of 3D-CBCT and 4D-CBCT images was scored on a scale of 1–3, with 1 being best and 3 being worst quality for visual verification of the IGRT results.</p> <p>Results</p> <p>Image quality was scored significantly worse for 3D-CBCT compared to 4D-CBCT: the worst score of 3 was given in 19 % and 7.1 % observations, respectively. Significant differences in target localization were observed between 4D-CBCT and 3D-CBCT based IG: compared to the reference of IG-4D, tumor positions differed by 1.9 mm ± 0.9 mm (3D vector) on average using IG-ITV and by 3.6 mm ± 3.2 mm using IG-3D; results of IG-ITV were significantly closer to the reference IG-4D compared to IG-3D. Differences between the 4D-CBCT and 3D-CBCT techniques increased significantly with larger motion amplitude of the tumor; analogously, differences increased with worse 3D-CBCT image quality scores. Inter-observer variability was largest in SI direction and was significantly larger in IG using 3D-CBCT compared to 4D-CBCT: 0.6 mm versus 1.5 mm (one standard deviation). Inter-observer variability was not different between the three ROs compared to the three RTTs.</p> <p>Conclusions</p> <p>Respiration correlated 4D-CBCT improves the accuracy of image-guidance by more precise target localization in the presence of breathing induced target motion and by reduced inter-observer variability.</p

    Magnetic Ground State Stabilized by Three-Site Interactions: Fe / Rh ( 111 )

    No full text
    We report the direct observation of a theoretically predicted magnetic ground state in a monolayer Fe on Rh(111), which is referred to as an up-up-down-down (↑↑↓↓) double-row-wise antiferromagnetic spin structure, using spin-polarized scanning tunneling microscopy. This exotic phase, which exists in three orientational domains, is revealed by experiments with magnetic probe tips performed in external magnetic fields. It is shown that a hitherto unconsidered four-spin–three-site beyond-Heisenberg interaction distinctly contributes to the spin coupling of atoms with S≥1 spins. The observation of the ↑↑↓↓ order substantiates the presence of higher-order, in particular, three-site interactions, in thin magnetic films of itinerant magnets

    Innovationen – Performancetreiber und nachhaltiger Wirtschaftsmotor in Deutschland? Festschrift zum 5. Würzburger Wirtschaftssymposium

    No full text
    5. Würzburger Wirtschaftssymposium, 20.11.2008 Deutsche Erfindungen verändern die Welt - heute wie vor 500 Jahren. Von Buchdruck, über Dieselmotor, Glühbirne bis hin zu Airbag, Aspirin, Dübel, Fernseher und mp3-Format. Alleine dieser bescheidene Überblick des Phänomens “Made in Germany” lässt den Betrachter die Bedeutung und das Potenzial von Innovationen am Standort Deutschland schnell erkennen. Experten aus Wirtschaft, Politik und Gesellschaft setzten sich am 20.11.2008 unter der Leitfrage: “Innovationen – Performancetreiber und nachhaltiger Wirtschaftsmotor in Deutschland?” mit der Bedeutung von Innovationen für den Standort Deutschland auseinander. Die Festschrift rundet - neben Interviews mit und Gastbeiträgen von Referenten der Veranstaltung - das 5. Würzburger Wirtschaftssymposium mit Stellungnahmen und Beiträgen renommierter Experten ab. Zu Wort kommen dabei Jungunternehmer ebenso wie Wissenschaftler der Universität Würzburg und Vertreter externer Organisationen
    corecore