1,987 research outputs found

    Observation of two new Ξb\Xi_b^- baryon resonances

    Get PDF
    Two structures are observed close to the kinematic threshold in the Ξb0π\Xi_b^0 \pi^- mass spectrum in a sample of proton-proton collision data, corresponding to an integrated luminosity of 3.0 fb1^{-1} recorded by the LHCb experiment. In the quark model, two baryonic resonances with quark content bdsbds are expected in this mass region: the spin-parity JP=12+J^P = \frac{1}{2}^+ and JP=32+J^P=\frac{3}{2}^+ states, denoted Ξb\Xi_b^{\prime -} and Ξb\Xi_b^{*-}. Interpreting the structures as these resonances, we measure the mass differences and the width of the heavier state to be m(Ξb)m(Ξb0)m(π)=3.653±0.018±0.006m(\Xi_b^{\prime -}) - m(\Xi_b^0) - m(\pi^{-}) = 3.653 \pm 0.018 \pm 0.006 MeV/c2/c^2, m(Ξb)m(Ξb0)m(π)=23.96±0.12±0.06m(\Xi_b^{*-}) - m(\Xi_b^0) - m(\pi^{-}) = 23.96 \pm 0.12 \pm 0.06 MeV/c2/c^2, Γ(Ξb)=1.65±0.31±0.10\Gamma(\Xi_b^{*-}) = 1.65 \pm 0.31 \pm 0.10 MeV, where the first and second uncertainties are statistical and systematic, respectively. The width of the lighter state is consistent with zero, and we place an upper limit of Γ(Ξb)<0.08\Gamma(\Xi_b^{\prime -}) < 0.08 MeV at 95% confidence level. Relative production rates of these states are also reported.Comment: 17 pages, 2 figure

    Measurement of the mass and lifetime of the Ωb\Omega_b^- baryon

    Get PDF
    A proton-proton collision data sample, corresponding to an integrated luminosity of 3 fb1^{-1} collected by LHCb at s=7\sqrt{s}=7 and 8 TeV, is used to reconstruct 63±963\pm9 ΩbΩc0π\Omega_b^-\to\Omega_c^0\pi^-, Ωc0pKKπ+\Omega_c^0\to pK^-K^-\pi^+ decays. Using the ΞbΞc0π\Xi_b^-\to\Xi_c^0\pi^-, Ξc0pKKπ+\Xi_c^0\to pK^-K^-\pi^+ decay mode for calibration, the lifetime ratio and absolute lifetime of the Ωb\Omega_b^- baryon are measured to be \begin{align*} \frac{\tau_{\Omega_b^-}}{\tau_{\Xi_b^-}} &= 1.11\pm0.16\pm0.03, \\ \tau_{\Omega_b^-} &= 1.78\pm0.26\pm0.05\pm0.06~{\rm ps}, \end{align*} where the uncertainties are statistical, systematic and from the calibration mode (for τΩb\tau_{\Omega_b^-} only). A measurement is also made of the mass difference, mΩbmΞbm_{\Omega_b^-}-m_{\Xi_b^-}, and the corresponding Ωb\Omega_b^- mass, which yields \begin{align*} m_{\Omega_b^-}-m_{\Xi_b^-} &= 247.4\pm3.2\pm0.5~{\rm MeV}/c^2, \\ m_{\Omega_b^-} &= 6045.1\pm3.2\pm 0.5\pm0.6~{\rm MeV}/c^2. \end{align*} These results are consistent with previous measurements.Comment: 11 pages, 5 figures, All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-008.htm

    Bose-Einstein correlations of same-sign charged pions in the forward region in pp collisions at √s=7 TeV

    Get PDF
    Bose-Einstein correlations of same-sign charged pions, produced in protonproton collisions at a 7 TeV centre-of-mass energy, are studied using a data sample collected by the LHCb experiment. The signature for Bose-Einstein correlations is observed in the form of an enhancement of pairs of like-sign charged pions with small four-momentum difference squared. The charged-particle multiplicity dependence of the Bose-Einstein correlation parameters describing the correlation strength and the size of the emitting source is investigated, determining both the correlation radius and the chaoticity parameter. The measured correlation radius is found to increase as a function of increasing charged-particle multiplicity, while the chaoticity parameter is seen to decreas

    Observation of an Excited Bc+ State

    Get PDF
    Using pp collision data corresponding to an integrated luminosity of 8.5 fb-1 recorded by the LHCb experiment at center-of-mass energies of s=7, 8, and 13 TeV, the observation of an excited Bc+ state in the Bc+π+π- invariant-mass spectrum is reported. The observed peak has a mass of 6841.2±0.6(stat)±0.1(syst)±0.8(Bc+) MeV/c2, where the last uncertainty is due to the limited knowledge of the Bc+ mass. It is consistent with expectations of the Bc∗(2S31)+ state reconstructed without the low-energy photon from the Bc∗(1S31)+→Bc+γ decay following Bc∗(2S31)+→Bc∗(1S31)+π+π-. A second state is seen with a global (local) statistical significance of 2.2σ (3.2σ) and a mass of 6872.1±1.3(stat)±0.1(syst)±0.8(Bc+) MeV/c2, and is consistent with the Bc(2S10)+ state. These mass measurements are the most precise to date

    Constraints on the unitarity triangle angle γ\gamma from Dalitz plot analysis of B0DK+πB^0 \to D K^+ \pi^- decays

    Get PDF
    The first study is presented of CP violation with an amplitude analysis of the Dalitz plot of B0DK+πB^0 \to D K^+ \pi^- decays, with DK+πD \to K^+ \pi^-, K+KK^+ K^- and π+π\pi^+ \pi^-. The analysis is based on a data sample corresponding to 3.0fb13.0\,{\rm fb}^{-1} of pppp collisions collected with the LHCb detector. No significant CP violation effect is seen, and constraints are placed on the angle γ\gamma of the unitarity triangle formed from elements of the Cabibbo-Kobayashi-Maskawa quark mixing matrix. Hadronic parameters associated with the B0DK(892)0B^0 \to D K^*(892)^0 decay are determined for the first time. These measurements can be used to improve the sensitivity to γ\gamma of existing and future studies of the B0DK(892)0B^0 \to D K^*(892)^0 decay.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-059.html; updated to correct figure 9 (numerical results unchanged

    Observation of the Bs0J/ψϕϕB_s^0 \rightarrow J/\psi \phi \phi decay

    Get PDF
    The Bs0J/ψϕϕB_s^0 \rightarrow J/\psi \phi \phi decay is observed in pppp collision data corresponding to an integrated luminosity of 3 fb1^{-1} recorded by the LHCb detector at centre-of-mass energies of 7 TeV and 8 TeV. This is the first observation of this decay channel, with a statistical significance of 15 standard deviations. The mass of the Bs0B_s^0 meson is measured to be 5367.08±0.38±0.155367.08\,\pm \,0.38\,\pm\, 0.15 MeV/c2^2. The branching fraction ratio B(Bs0J/ψϕϕ)/B(Bs0J/ψϕ)\mathcal{B}(B_s^0 \rightarrow J/\psi \phi \phi)/\mathcal{B}(B_s^0 \rightarrow J/\psi \phi) is measured to be 0.0115\,\pm\, 0.0012\, ^{+0.0005}_{-0.0009}. In both cases, the first uncertainty is statistical and the second is systematic. No evidence for non-resonant Bs0J/ψϕK+KB_s^0 \rightarrow J/\psi \phi K^+ K^- or Bs0J/ψK+KK+KB_s^0 \rightarrow J/\psi K^+ K^- K^+ K^- decays is found.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-033.htm

    Search for the rare decays B0J/ψγB^{0}\to J/\psi \gamma and Bs0J/ψγB^{0}_{s} \to J/\psi \gamma

    Get PDF
    A search for the rare decay of a B0B^{0} or Bs0B^{0}_{s} meson into the final state J/ψγJ/\psi\gamma is performed, using data collected by the LHCb experiment in pppp collisions at s=7\sqrt{s}=7 and 88 TeV, corresponding to an integrated luminosity of 3 fb1^{-1}. The observed number of signal candidates is consistent with a background-only hypothesis. Branching fraction values larger than 1.7×1061.7\times 10^{-6} for the B0J/ψγB^{0}\to J/\psi\gamma decay mode are excluded at 90% confidence level. For the Bs0J/ψγB^{0}_{s}\to J/\psi\gamma decay mode, branching fraction values larger than 7.4×1067.4\times 10^{-6} are excluded at 90% confidence level, this is the first branching fraction limit for this decay.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-044.htm

    A new algorithm for identifying the flavour of Bs0B_s^0 mesons at LHCb

    Get PDF
    A new algorithm for the determination of the initial flavour of Bs0B_s^0 mesons is presented. The algorithm is based on two neural networks and exploits the bb hadron production mechanism at a hadron collider. The first network is trained to select charged kaons produced in association with the Bs0B_s^0 meson. The second network combines the kaon charges to assign the Bs0B_s^0 flavour and estimates the probability of a wrong assignment. The algorithm is calibrated using data corresponding to an integrated luminosity of 3 fb1^{-1} collected by the LHCb experiment in proton-proton collisions at 7 and 8 TeV centre-of-mass energies. The calibration is performed in two ways: by resolving the Bs0B_s^0-Bˉs0\bar{B}_s^0 flavour oscillations in Bs0Dsπ+B_s^0 \to D_s^- \pi^+ decays, and by analysing flavour-specific Bs2(5840)0B+KB_{s 2}^{*}(5840)^0 \to B^+ K^- decays. The tagging power measured in Bs0Dsπ+B_s^0 \to D_s^- \pi^+ decays is found to be (1.80±0.19(stat)±0.18(syst))(1.80 \pm 0.19({\rm stat}) \pm 0.18({\rm syst}))\%, which is an improvement of about 50\% compared to a similar algorithm previously used in the LHCb experiment.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-056.htm

    Measurement of the Bs0J/ψηB_{s}^{0} \rightarrow J/\psi \eta lifetime

    Get PDF
    Using a data set corresponding to an integrated luminosity of 3fb13 fb^{-1}, collected by the LHCb experiment in pppp collisions at centre-of-mass energies of 7 and 8 TeV, the effective lifetime in the Bs0J/ψηB^0_s \rightarrow J/\psi \eta decay mode, τeff\tau_{\textrm{eff}}, is measured to be τeff=1.479±0.034 (stat)±0.011 (syst)\tau_{\textrm{eff}} = 1.479 \pm 0.034~\textrm{(stat)} \pm 0.011 ~\textrm{(syst)} ps. Assuming CPCP conservation, τeff\tau_{\textrm{eff}} corresponds to the lifetime of the light Bs0B_s^0 mass eigenstate. This is the first measurement of the effective lifetime in this decay mode.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-017.htm
    corecore