17 research outputs found

    Sperm Toolbox-A selection of small molecules to study human spermatozoa

    Get PDF
    Male contraceptive options and infertility treatments are limited, and almost all innovation has been limited to updates to medically assisted reproduction protocols and methods. To accelerate the development of drugs that can either improve or inhibit fertility, we established a small molecule library as a toolbox for assay development and screening campaigns using human spermatozoa. We have profiled all compounds in the Sperm Toolbox in several automated high-throughput assays that measure stimulation or inhibition of sperm motility or the acrosome reaction. We have assayed motility under non-capacitating and capacitating conditions to distinguish between pathways operating under these different physiological states. We also assayed cell viability to ensure any effects on sperm function are specific. A key advantage of our studies is that all compounds are assayed together in the same experimental conditions, which allows quantitative comparisons of their effects in complementary functional assays. We have combined the resulting datasets to generate fingerprints of the Sperm Toolbox compounds on sperm function. The data are included in an on-line R-based app for convenient querying.</p

    Sperm Toolbox-A selection of small molecules to study human spermatozoa

    Get PDF
    Male contraceptive options and infertility treatments are limited, and almost all innovation has been limited to updates to medically assisted reproduction protocols and methods. To accelerate the development of drugs that can either improve or inhibit fertility, we established a small molecule library as a toolbox for assay development and screening campaigns using human spermatozoa. We have profiled all compounds in the Sperm Toolbox in several automated high-throughput assays that measure stimulation or inhibition of sperm motility or the acrosome reaction. We have assayed motility under non-capacitating and capacitating conditions to distinguish between pathways operating under these different physiological states. We also assayed cell viability to ensure any effects on sperm function are specific. A key advantage of our studies is that all compounds are assayed together in the same experimental conditions, which allows quantitative comparisons of their effects in complementary functional assays. We have combined the resulting datasets to generate fingerprints of the Sperm Toolbox compounds on sperm function. The data are included in an on-line R-based app for convenient querying.</p

    Treatment with tocilizumab or corticosteroids for COVID-19 patients with hyperinflammatory state: a multicentre cohort study (SAM-COVID-19)

    Get PDF
    Objectives: The objective of this study was to estimate the association between tocilizumab or corticosteroids and the risk of intubation or death in patients with coronavirus disease 19 (COVID-19) with a hyperinflammatory state according to clinical and laboratory parameters. Methods: A cohort study was performed in 60 Spanish hospitals including 778 patients with COVID-19 and clinical and laboratory data indicative of a hyperinflammatory state. Treatment was mainly with tocilizumab, an intermediate-high dose of corticosteroids (IHDC), a pulse dose of corticosteroids (PDC), combination therapy, or no treatment. Primary outcome was intubation or death; follow-up was 21 days. Propensity score-adjusted estimations using Cox regression (logistic regression if needed) were calculated. Propensity scores were used as confounders, matching variables and for the inverse probability of treatment weights (IPTWs). Results: In all, 88, 117, 78 and 151 patients treated with tocilizumab, IHDC, PDC, and combination therapy, respectively, were compared with 344 untreated patients. The primary endpoint occurred in 10 (11.4%), 27 (23.1%), 12 (15.4%), 40 (25.6%) and 69 (21.1%), respectively. The IPTW-based hazard ratios (odds ratio for combination therapy) for the primary endpoint were 0.32 (95%CI 0.22-0.47; p < 0.001) for tocilizumab, 0.82 (0.71-1.30; p 0.82) for IHDC, 0.61 (0.43-0.86; p 0.006) for PDC, and 1.17 (0.86-1.58; p 0.30) for combination therapy. Other applications of the propensity score provided similar results, but were not significant for PDC. Tocilizumab was also associated with lower hazard of death alone in IPTW analysis (0.07; 0.02-0.17; p < 0.001). Conclusions: Tocilizumab might be useful in COVID-19 patients with a hyperinflammatory state and should be prioritized for randomized trials in this situatio

    Targeting DNA repair deficiencies with small molecule drugs for cancer treatment

    No full text
    Le cancer est une maladie très hétérogène avec une multitude de facettes différentes. Cependant, même les différents types de cancer partagent un ensemble de caractéristiques qui peuvent être exploitées à des fins thérapeutiques. Dans notre groupe, nous nous intéressons aux dommages et à la réparation de l'ADN, en particulier dans le contexte du cancer, car l'instabilité génomique est considérée comme l'une des "caractéristiques du cancer". La recombinaison homologue (RH) est un mécanisme utilisé par les cellules pour réparer les cassures double brin, le type de dommage le plus dangereux de l'ADN. Des déficiences dans cette voie de réparation de l'ADN entraînent une instabilité génomique accrue et ont été observées dans une grande variété de tumeurs, notamment dans les cancers de l'ovaire et du sein. Les événements les plus fréquemment associés aux défauts de la voie de réparation de l'ADN sont des altérations génétiques dans les gènes liés à la voie de réparation de l'ADN, tels que BRCA1, BRCA2 et PALB2, identifié plus récemment. Le concept de létalité synthétique décrit l'incompatibilité ou la létalité de deux événements simultanés qui sont individuellement tolérables. La recherche sur le cancer tire parti de cette idée pour développer de nouveaux traitements ciblés. Le succès le plus important du développement de thérapies basées sur la létalité synthétique est le cas des inhibiteurs de PARP. Il a été observé que l'inhibition de PARP-1, une protéine abondante impliquée dans de nombreux processus cellulaires, y compris la réparation de l'ADN, entraîne une létalité synthétique avec des défauts de recombinaison homologue. Par conséquent, les inhibiteurs de PARP ont été développés pour cibler spécifiquement les tumeurs déficientes en RH tout en épargnant les tissus normaux déficients en RH. Néanmoins, comme pour la plupart des médicaments, de nombreux patients développent une résistance aux inhibiteurs de la PARP, ce qui peut entraîner une récidive de la maladie, soulignant ainsi la nécessité de trouver d'autres options thérapeutiques. Les recherches récentes se sont concentrées non seulement sur la découverte de nouvelles interactions létales synthétiques, mais aussi sur le développement de nouvelles combinaisons de molécules pour potentialiser leur effet et prévenir et contrecarrer les résistances aux médicaments. Suivant cette idée, l'objectif principal de mon travail de doctorat était de trouver de nouveaux traitements potentiels pour les tumeurs déficientes en RH, seuls ou en combinaison avec des inhibiteurs de PARP. Dans le cadre de ce projet, nous avons également développé un nouveau système de criblage in cellulo, basé sur l'analyse des effets des composés étudiés sur des populations cellulaires ayant des capacités RH différentes. Nous avons transfecté de manière stable des lignées cellulaires déficientes et déficientes en RH pour qu'elles expriment respectivement des protéines fluorescentes rouges ou vertes, et nous les avons mises en co-culture avec plus de 1000 médicaments d'une bibliothèque de composés. Nous avons identifié le CB1954, précédemment étudié en tant que promédicament, pour cibler spécifiquement les cellules déficientes en RH. Il est intéressant de noter que le CB1954 agit en synergie avec les inhibiteurs de PARP à la fois dans les cellules déficientes en RH et dans les cellules compétentes, constituant ainsi une combinaison prometteuse avec un potentiel intéressant. De plus, nous avons identifié une synergie entre l'inhibition de la PARP (Talazoparib) et l'inhibition de la PRMT de type I (MS023) dans des cellules de CBNPC et de cancer ovarien MTAP-négatif, à la fois sensibles et résistantes aux PARPi. Les deux combinaisons doivent faire l'objet d'un examen plus approfondi afin de mieux caractériser leurs mécanismes d'action et d'identifier les biomarqueurs de sensibilité et de résistance aux traitements. Nous étudions actuellement les effets de CB1954+PARPi sur le destin cellulaire et, puisque nous avons confirmé les effets des médicaments et la synergie dans des cellules cultivées en 3D, nous testons la combinaison dans des modèles de souris xénogreffes pour le cancer de l'ovaire. En résumé, nous avons développé une nouvelle méthode basée sur la fluorescence pour cribler les composés ayant un effet létal synthétique, qui pourrait être adaptée à l'étude d'autres pathologies. Nous avons également identifié et testé deux nouvelles combinaisons de composés qui pourraient potentiellement être appliquées au traitement des tumeurs résistantes aux inhibiteurs de PARP.Cancer is a very heterogeneous disease with a multitude of different facets. However, even different types of cancer share a set of characteristics that can be exploited for therapeutic purposes. In our group we are interested in DNA damage and repair, particularly in the context of cancer, since genomic instability is considered one of the "Hallmarks of Cancer". Homologous Recombination (HR) is a mechanism used by cells to repair Double-Strand Breaks, the most harmful type of DNA damage. Deficiencies in this pathway of DNA repair results in increased genomic instability and has been observed in a wide variety of tumours, notably in ovarian and breast cancer. The events most commonly associated with HR defects are genetic alterations in HR related genes such as BRCA1, BRCA2 and the more recently identified PALB2. The concept of synthetic lethality describes the incompatibility or lethality of two simultaneous events that are individually tolerable. Cancer research is taking advantage of this idea to develop new targeted treatments. The most important success of synthetic lethality-based therapy development is the case of PARP inhibitors. It was observed that inhibition of PARP-1, an abundant protein involved in many cellular processes, including DNA repair, is synthetically lethal with defects in Homologous Recombination. Therefore, PARP inhibitors were developed to specifically target HR-deficient tumours while sparing normal HR-proficient tissues. Nevertheless, as with most drugs, many patients develop resistance to PARP inhibitors, which can lead to disease recurrence, thus highlighting the need for alternative treatment options. Recent research has focused not only on finding new synthetic lethal interactions but also on developing new combinations of molecules to potentiate their effect and both prevent and counteract resistances to drugs. Following this idea, the main objective of my doctoral work was to find new potential treatments for HR-deficient tumours, alone or in combination with PARP inhibitors. Within this project, we also developed a new in cellulo screen system, based on analyzing the effects of the studied compounds on cell populations with different HR capacities. We stably transfected HR-proficient and deficient cell lines to express either red or green fluorescent proteins, respectively, and co-cultured them with more than 1000 drugs of a library of compounds. We identified CB1954, previously studied as a prodrug, to specifically target HR-deficient cells. Interestingly, CB1954 synergizes with PARP inhibitors in both HR-deficient and proficient cells, thus constituting a promising combination with interesting potential. Additionally, we identified synergy between PARP inhibition (Talazoparib) and type I PRMT inhibition (MS023) in MTAP-negative NSCLC and ovarian cancer cells, both PARPi sensitive and resistant. Both combinations need further examination to better characterize their mechanisms of action and identify the biomarkers for sensitivity and resistance to the treatments. We are currently studying the effects of CB1954+PARPi on cell fate and, since we have confirmed the effects of the drugs and the synergy in 3D cultured cells, we are testing the combination in ovarian cancer xenograft mouse models. In summary, we have developed a new fluorescence-based method to screen for compounds having a synthetic lethal effect, which could be adapted to the study of other pathologies. We have also identified and tested two new compound combinations that could potentially be applied to the treatment of tumours resistant to PARP inhibitors

    p53 controls the plasticity of mammary luminal progenitor cells downstream of Met signaling

    No full text
    International audienceBackground: The adult mammary epithelium is composed of basal and luminal cells. The luminal lineage comprises two major cell populations, positive and negative for estrogen and progesterone receptors (ER and PR, respectively), both containing clonogenic progenitor cells. Deregulated ER/PR− luminal progenitor cells are suspected to be at the origin of basal-type triple-negative (TNBC) breast cancers, a subtype frequently associated with loss of P53 function and MET signaling hyperactivation. Using mouse models, we recently reported that p53 restricts luminal progenitor cell amplification whereas paracrine Met activation stimulates their growth and favors a luminal-to-basal switch. Here, we analyzed how these two critical pathways interact to control luminal progenitor function.Methods: We have (i) established and analyzed the gene expression profile of luminal progenitors isolated by ICAM-1, a robust surface marker we previously identified; (ii) purified luminal progenitors from p53-deficient and p53-proficient mouse mammary epithelium to compare their functional and molecular characteristics; and (iii) analyzed their response to HGF, the major Met ligand, in three-dimensional cultures.Results: We found that luminal progenitors, compared to non-clonogenic luminal cells, overexpress Trp53 and numerous p53 target genes. In vivo, loss of Trp53 induced the expansion of luminal progenitors, affecting expression of several important p53 target genes including those encoding negative regulators of cell cycle progression. Consistently, p53-deficient luminal progenitors displayed increased proliferative and self-renewal activities in culture. However, they did not exhibit perturbed expression of luminal-specific markers and major regulators, such as Hey1, Elf5, and Gata3. Moreover, although expressing Met at higher level than p53-proficient luminal progenitors, p53-deficient luminal progenitors failed to acquire basal-specific features when stimulated by HGF, showing that p53 promotes the plastic behavior of luminal progenitors downstream of Met activation.Conclusions: Our study reveals a crosstalk between Met- and p53-mediated signaling pathways in the regulation of luminal progenitor function. In particular, it shows that neither p53 loss alone nor p53 loss combined with Met signaling activation caused an early detectable cell fate alteration in luminal progenitors. Conceivably, additional events are required to confer basal-specific characteristics to luminal-derived TNBCs

    p53 controls the plasticity of mammary luminal progenitor cells downstream of Met signaling

    Get PDF
    Abstract Background The adult mammary epithelium is composed of basal and luminal cells. The luminal lineage comprises two major cell populations, positive and negative for estrogen and progesterone receptors (ER and PR, respectively), both containing clonogenic progenitor cells. Deregulated ER/PR− luminal progenitor cells are suspected to be at the origin of basal-type triple-negative (TNBC) breast cancers, a subtype frequently associated with loss of P53 function and MET signaling hyperactivation. Using mouse models, we recently reported that p53 restricts luminal progenitor cell amplification whereas paracrine Met activation stimulates their growth and favors a luminal-to-basal switch. Here, we analyzed how these two critical pathways interact to control luminal progenitor function. Methods We have (i) established and analyzed the gene expression profile of luminal progenitors isolated by ICAM-1, a robust surface marker we previously identified; (ii) purified luminal progenitors from p53-deficient and p53-proficient mouse mammary epithelium to compare their functional and molecular characteristics; and (iii) analyzed their response to HGF, the major Met ligand, in three-dimensional cultures. Results We found that luminal progenitors, compared to non-clonogenic luminal cells, overexpress Trp53 and numerous p53 target genes. In vivo, loss of Trp53 induced the expansion of luminal progenitors, affecting expression of several important p53 target genes including those encoding negative regulators of cell cycle progression. Consistently, p53-deficient luminal progenitors displayed increased proliferative and self-renewal activities in culture. However, they did not exhibit perturbed expression of luminal-specific markers and major regulators, such as Hey1, Elf5, and Gata3. Moreover, although expressing Met at higher level than p53-proficient luminal progenitors, p53-deficient luminal progenitors failed to acquire basal-specific features when stimulated by HGF, showing that p53 promotes the plastic behavior of luminal progenitors downstream of Met activation. Conclusions Our study reveals a crosstalk between Met- and p53-mediated signaling pathways in the regulation of luminal progenitor function. In particular, it shows that neither p53 loss alone nor p53 loss combined with Met signaling activation caused an early detectable cell fate alteration in luminal progenitors. Conceivably, additional events are required to confer basal-specific characteristics to luminal-derived TNBCs

    RAD51 protects against nonconservative DNA double-strand break repair through a nonenzymatic function

    No full text
    International audienceAbstract Selection of the appropriate DNA double-strand break (DSB) repair pathway is decisive for genetic stability. It is proposed to act according to two steps: 1-canonical nonhomologous end-joining (C-NHEJ) versus resection that generates single-stranded DNA (ssDNA) stretches; 2-on ssDNA, gene conversion (GC) versus nonconservative single-strand annealing (SSA) or alternative end-joining (A-EJ). Here, we addressed the mechanisms by which RAD51 regulates this second step, preventing nonconservative repair in human cells. Silencing RAD51 or BRCA2 stimulated both SSA and A-EJ, but not C-NHEJ, validating the two-step model. Three different RAD51 dominant-negative forms (DN-RAD51s) repressed GC and stimulated SSA/A-EJ. However, a fourth DN-RAD51 repressed SSA/A-EJ, although it efficiently represses GC. In living cells, the three DN-RAD51s that stimulate SSA/A-EJ failed to load efficiently onto damaged chromatin and inhibited the binding of endogenous RAD51, while the fourth DN-RAD51, which inhibits SSA/A-EJ, efficiently loads on damaged chromatin. Therefore, the binding of RAD51 to DNA, rather than its ability to promote GC, is required for SSA/A-EJ inhibition by RAD51. We showed that RAD51 did not limit resection of endonuclease-induced DSBs, but prevented spontaneous and RAD52-induced annealing of complementary ssDNA in vitro. Therefore, RAD51 controls the selection of the DSB repair pathway, protecting genome integrity from nonconservative DSB repair through ssDNA occupancy, independently of the promotion of CG

    Sperm Toolbox compounds.

    No full text
    Male contraceptive options and infertility treatments are limited, and almost all innovation has been limited to updates to medically assisted reproduction protocols and methods. To accelerate the development of drugs that can either improve or inhibit fertility, we established a small molecule library as a toolbox for assay development and screening campaigns using human spermatozoa. We have profiled all compounds in the Sperm Toolbox in several automated high-throughput assays that measure stimulation or inhibition of sperm motility or the acrosome reaction. We have assayed motility under non-capacitating and capacitating conditions to distinguish between pathways operating under these different physiological states. We also assayed cell viability to ensure any effects on sperm function are specific. A key advantage of our studies is that all compounds are assayed together in the same experimental conditions, which allows quantitative comparisons of their effects in complementary functional assays. We have combined the resulting datasets to generate fingerprints of the Sperm Toolbox compounds on sperm function. The data are included in an on-line R-based app for convenient querying.</div

    Volcano plots of acrosome, capacitation and motility assays.

    No full text
    Upper panel indicates 10 μM, lower plot panels indicate 30 μM. Incubation times for assays are 3h with compound for Acrosome 2 assay and Motility (non-capacitating) (PM = progressive motility), and 30 min for the Capacitation assay (HA = hyperactive motility, PM = progressive motility). Dotted line indicates significance levels of 0.05. Any point above dotted line is indicated in magenta. Buffer conditions are indicated below Plot title (capacitating vs. non-capacitating). (TIF)</p
    corecore