
                                                                    

University of Dundee

Sperm Toolbox-A selection of small molecules to study human spermatozoa

Gruber, Franz S.; Richardson, Anthony; Johnston, Zoe C.; Myles, Rachel; Norcross, Neil R.;
Day, David P.
Published in:
PLoS ONE

DOI:
10.1371/journal.pone.0297666

Publication date:
2024

Licence:
CC BY

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Discovery Research Portal

Citation for published version (APA):
Gruber, F. S., Richardson, A., Johnston, Z. C., Myles, R., Norcross, N. R., Day, D. P., Georgiou, I., Sesma-Sanz,
L., Wilson, C., Read, K. D., Martins da Silva, S., Barratt, C. L. R., Gilbert, I. H., & Swedlow, J. R. (2024). Sperm
Toolbox-A selection of small molecules to study human spermatozoa. PLoS ONE, 19(2), Article e0297666.
https://doi.org/10.1371/journal.pone.0297666

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 04. Jul. 2024

https://doi.org/10.1371/journal.pone.0297666
https://discovery.dundee.ac.uk/en/publications/aa5d8424-6eaf-4ea9-8c01-d8a69c00f928
https://doi.org/10.1371/journal.pone.0297666


RESEARCH ARTICLE

Sperm Toolbox—A selection of small

molecules to study human spermatozoa

Franz S. Gruber1☯, Anthony RichardsonID
2☯, Zoe C. Johnston3☯, Rachel Myles3, Neil

R. Norcross2, David P. Day2, Irene Georgiou2, Laura Sesma-Sanz1, Caroline Wilson2,

Kevin D. Read2, Sarah Martins da Silva2, Christopher L. R. Barratt3, Ian H. Gilbert2, Jason

R. SwedlowID
1*

1 Divisions of Computational Biology and Molecular, Cell and Developmental Biology, and National

Phenotypic Screening Centre, School of Life Sciences, University of Dundee, Dundee, United Kingdom,

2 Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences,

University of Dundee, Dundee, United Kingdom, 3 Division of Systems Medicine, School of Medicine,

Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom

☯ These authors contributed equally to this work.

* jrswedlow@dundee.ac.uk

Abstract

Male contraceptive options and infertility treatments are limited, and almost all innovation

has been limited to updates to medically assisted reproduction protocols and methods. To

accelerate the development of drugs that can either improve or inhibit fertility, we estab-

lished a small molecule library as a toolbox for assay development and screening cam-

paigns using human spermatozoa. We have profiled all compounds in the Sperm Toolbox in

several automated high-throughput assays that measure stimulation or inhibition of sperm

motility or the acrosome reaction. We have assayed motility under non-capacitating and

capacitating conditions to distinguish between pathways operating under these different

physiological states. We also assayed cell viability to ensure any effects on sperm function

are specific. A key advantage of our studies is that all compounds are assayed together in

the same experimental conditions, which allows quantitative comparisons of their effects in

complementary functional assays. We have combined the resulting datasets to generate fin-

gerprints of the Sperm Toolbox compounds on sperm function. The data are included in an

on-line R-based app for convenient querying.

Introduction

One of the grand challenges for science and society is the development of novel contraceptives

that are safe and deliver control of reproduction to men and women all over the world. In par-

allel, a deeper understanding of sperm maturation, motility, fertilization, and possible inter-

ventions for male infertility is required to counter declining birth rates. Recently, the

application of advanced technologies has helped move the human fertility field forward,

revealing new potential targets for both contraception and fertility, and new compounds as

contraceptive candidates (reviewed by [1–3]). A key part of this effort is the development of

mechanistic insight and drug candidates that affect the behaviour and properties of human
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spermatozoa [4–7]. Towards this end, we have recently developed an automated live human

sperm, target-agnostic, phenotypic screening platform that can profile the effects of 1000s of

compounds on spermatozoa. These parameters are then used to identify modifiers of sperm

function [8, 9]. These modifiers can cause either positive or negative effects and therefore are

starting points for either fertility treatments (including medical assisted reproductive technolo-

gies) or contraceptive development.

A limitation of the phenotypic assays we have employed is the lack of mechanistic informa-

tion on compounds that score in the assay. Because there is so little known about the molecular

mechanisms that control sperm motility, we are unable to develop hypotheses of potential tar-

gets when new hits are identified in the sperm motility assay. However, it is now well-estab-

lished that features derived from images in phenotypic assays, when compared to phenotypes

measured on reference compounds, can accurately stratify genetic or chemical perturbations

in phenotypic screens [10, 11]. We have therefore collected 83 reference compounds that have

been reported in the literature to affect sperm function in various assays as well as compounds

we have observed to modify sperm function in our own assays, to form the Sperm

Toolbox (STB) (Table 1). In constructing the STB, we have focussed on compounds reported

in the literature that affect human systems, but compounds tested in relevant animal models,

cell-based, or biochemical systems have also been included (Fig 1A). Published analyses of the

compounds in the STB have indicated effects on sperm function e.g. motility, capacitation,

acrosome reaction, Ca2+ signalling, viability, or related to other processes (e.g. spermatogene-

sis, liquefaction, or ejaculation; Fig 1C). Compound annotations are included in the dataset

derived from the STB and indicate that Enzymes/Kinases, Receptors, Channels and Transport-

ers are the most represented target of the STB compound classes (Fig 1D). Similar toolboxes

have been established for other diseases or targets, e.g. the MMV Pandemic Response Box [12],

the SGC Epigenetic Chemical Probe Collection [13], or the Drug Repurposing Hub [14].

List of compounds included in Sperm Toolbox. Published Phenotypes are summaries of

reported effects on sperm function related to other processes (e.g. spermatogenesis, liquefaction,

or ejaculation). Compounds from our own screening campaigns, which have not been pub-

lished and are included into the Sperm Toolbox have been labelled with ‘This study’ (Fig 1B).

To demonstrate the value of the STB, we have assayed STB compounds in a series of high

throughput phenotypic assays of sperm function (Fig 1A). The resulting quantitative finger-

print of sperm function modifiers provides a useful reference for drug discovery campaigns as

well as experiments that explore relevant molecular mechanisms. An advantage of using a

high-throughput platform is the ability to simultaneously compare many compounds under

the same assay conditions (same buffer system, same sample), within a short amount of time.

This overcomes limitations of screening compounds at low throughput, where only few com-

pounds can be tested with the same donor pool, one compound at a time. Invariably some of

the compounds we have included in the STB have proven to have little effect in human sperm,

at least under the conditions and at the concentrations we have used. We have maintained

these compounds in the STB and reported the results to ensure the published literature is cor-

rect and authoritative.

Results and discussion

We tested the STB compounds in multiple functional sperm assays, as well as more general

cytotoxicity and aqueous solubility assays (Fig 1A). Using information from the Drug Repur-

posing Hub [14], we generated a protein-protein interaction network of targets related to STB

compounds (Fig 1E). This network consists of multiple subclusters related to functions in sper-

matozoa (Fig 1F) and other biological processes, functions, and pathways (Fig 1G).
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Table 1. Sperm Toolbox compounds.

STB

Number

Name Published Phenotype References

1 ASI-8 Blocks soluble adenyl cyclase (sAC) [15–17]

2 bpV(phen) Blocks progesterone induced acrosome reaction; blocks progesterone induced Ca2+ response [18]

3 Tideglusib Spermicidal; vaginal treatment [19]

4 Genistein Blocks progesterone induced acrosome reaction; blocks progesterone induced Ca2+ response [18]

5 T16Ainh-A01 Blocks acrosome reaction induced by recombinant ZP3 [20]

6 Niflumic acid Blocks acrosome reaction induced by recombinant rhZP3 [20]

7 Hexachlorophene Reduces sperm motility; blocks sAC [15]

8 Fenvalerate Blocks progesterone induced acrosome reaction [18]

9 Niclosamide Shape abnormality [21]

10 BMS-189453 Interferes with spermatogenesis [22]

11 Dipyridamole Enhances sperm motility [23]

12 Cloperastine hydrochloride Reduces sperm motility This study

13 Resiquimod Reduction of sperm motility; only sperm with X chromosome [8, 24]

14 Compound B4 Reduces sperm motility [25]

15 2-Guanidinobenzimidazole Reduces sperm motility [26, 27]

16 Alexidine dihydrochloride Reduces sperm motility [8]

17 TP 003 Enhances sperm motility [9]

18 NSC 697923 Reduces sperm motility This study

19 Pha-665752 Modulates P4 evoked Ca2+ response [28]

20 Ouabain Reduces sperm motility [29]

21 Trequinsin hydrochloride Increases hyperactivated sperm; increases penetration of sperm into viscous media, increases

motility

[28]

22 Leelamine hydrochloride Modulates P4 evoked Ca2+ response [28]

23 SLM 6031434 hydrochloride Induces acrosome reaction This study

24 JQ1 Interferes with spermatogenesis; reduces sperm count; reduces motility [30]

25 n-[4-(4-Chlorophenyl)-1,3-thiazol-2-yl]

guanidine

Related to Hv1 [27]

26 Nafamostat Interferes with liquefaction; reduces sperm motility [31, 32]

27 Anandamide Reduces sperm motility [26]

28 Torin 2 Enhances sperm motility [9]

29 PD 146176 Antagonizing negative effects of ROS on sperm function such as acrosome reaction [33]

30 Mibefradil Blocks progesterone induced Ca2+ response [34]

31 CYM 5442 hydrchloride Reduces sperm motility; induces acrosome reaction This study

32 MJ33 Prevents capacitation-associated tyrosine phosphorylation by PKA [35]

33 HC-056456 Blocks Ca2+ and Na+ entry; blocks onset of hyperactive motility [36]

34 Urinastatin Interferes with liquefaction; reduces sperm motility [31]

35 Pristimerin Modulates sperm motility; reduces progesterone induced Ca2+ response [37, 38]

36 CZC 25146 LRRK2 neuronal toxicity [39]

37 NNC 55–0396 dihydrochloride Blocks ccl-20 induced Ca2+ response; Modulates CatSper [34]

38 666–15 Reduces sperm motility; induces acrosome reaction This study

39 Phenanthroline Inhibit proteolytic activity of PSA [32, 40]

40 CCR6 inhibitor Patent [41]

41 Oprea1_544341 Reduces sperm motility; role of glycolysis in sperm motility [42, 43]

42 A23187 Induces acrosome reaction [44]

43 LRRK2-IN-1 Enhances [9]

44 Disulfiram immotile sperm; spermicidal [8, 45, 46]

45 Forskolin Stimulates acrosome reaction [47]

(Continued)
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To compare the effects of STB compounds on specific sperm functions (e.g. motility, acro-

some reaction, viability), we screened them in multiple phenotypic functional assays described

below. Each sperm function assay has been repeated in multiple donor pools (see Materials

and methods), where each pool consists of cells donated from at least 3 different donors to

address donor to donor variability. Each compound has been tested at two concentrations, 10

and 30 μM, and normalized to vehicle controls (DMSO, see Materials and methods). We have

Table 1. (Continued)

STB

Number

Name Published Phenotype References

46 Alfuzosin Interferes with ejaculation [48]

47 Compound 19 Blocks TSSK; similarity to brigatinib [49]

48 IBMX Modulates capacitation [35]

49 Tamsulosin Interferes with ejaculation [48]

50 Imiquimod Reduction of sperm motility; only sperm with X chromosome [24]

51 Bithionol Blocks sAC [15, 17]

52 GF 109203X Blocks progesterone induced acrosome reaction; blocks progesterone induced Ca2+ response [18]

53 CTFRinh-172 Blocks progesterone induced acrosome reaction; blocks sperm hyperactivation; blocks

recombinant ZP3 induced acrosome reaction

[50]

54 Sodium orthovanadate Blocks progesterone induced acrosome reaction; blocks progesterone induced Ca2+ response [18]

55 FPL 64176 Modulates evoked Ca2+ response [28]

56 183 Reduces acrosome reaction [51]

57 Esomeprazole Reduces sperm motility [52]

58 68853496 Patent; sAC inhibitor [53]

59 Gossypol Causes azoospermia [54]

60 Clofarabine Enhances sperm motility [9]

61 B07 hydrochloride Reduction of sperm motility [55]

62 KT 5720 Evokes Ca2+ signaling in sperm [56]

63 Linsitinib enhances sperm motility [9]

64 Tafenoquine Reduces sperm motility; induces acrosome reaction This study

65 Hesperadin hydrochloride Reduces sperm motility This study

66 UK 78282 hydrochloride Modulates Ca2+ response [28]

67 Tacrolimus Blocks progesterone induced acrosome reaction [18]

68 BPO-27 CTFR inhibitor patent [57]

69 Tak-063 Enhances sperm motility [9]

70 LRE1 Prevents hyperactivation [58]

71 TAE226 Structural similarity with brigatinib (reduces motility) This study

72 GW 843682X Enhances sperm motility [9]

73 GSK1904529A Inhibition of hyperactivation [59]

74 AZD 7762 hydrochloride Reduces sperm motility This study

75 Cyclosporin A Blocks progesterone induced acrosome reaction [18]

76 NVP-AEW541 Inhibition of hyperactivity [59]

77 PF 431396 Blocks capacitation [60]

78 JX 401 Modulates Ca2+ response [28]

79 H 89 dihydrochloride Evokes Ca2+ signaling in sperm cells [56]

80 Ro 106–9920 Reduces sperm motility This study

81 CCR6 inhibitor 1 Potentially blocks acrosome reaction [34, 61]

82 Herbimycin a Blocks progesterone induced acrosome reaction; blocks progesterone induced Ca2+ response [18]

83 Miglustat Interferes with spermatogenesis [62]

https://doi.org/10.1371/journal.pone.0297666.t001
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Fig 1. Design and assay of the Sperm Toolbox. (A) The Sperm Toolbox is a collection of 83 small molecules with published, observed or inferred effect on

multiple biological processes related to the biogenesis or function of spermatozoa. Human sperm cells have been tested in various assays, which allows

comparison of compounds under the same experimental conditions. (B) Summary of the STB compound compositions. (C) Summary of annotated (i.e.

published, observed, inferred) sperm function of Toolbox compounds. (D) Coarse classification of STB target classes. (E) StringDB Protein-Protein

interaction networks (Full network, confidence 0.7) of putative targets of STB compounds. Protein targets have been inferred from the repurposing hub.

Network has been clustered using MCL clustering in Cytoscape. (F) Sperm related terms (GeneOntology, Reactome) within the network shown in (E).
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modified our assays from the previously published workflow [8] by increasing incubation time

and introducing conditions that support capacitation, which is a sperm maturation process

required for fertilization. These changes expand the range of targets that we can explore in our

assays. Our live-sperm-based high-throughput motility assays use an automated microscope to

record short timelapse movies. These assays can be run in different protocols (S1 Fig). The

first protocol, denoted ‘motility assay’, uses conditions that do not support capacitation and

model the state of spermatozoa after ejaculation. In this protocol, cells are incubated with com-

pounds for 10 min prior to the first motility read-out. A second and third motility read-out

were performed after 3h and 6h incubation. The second protocol, denoted ‘capacitation assay’,

utilises conditions that support capacitation (S1 Fig). In this protocol, cells are kept in condi-

tions supporting capacitation for 30 minutes prior to 30 minutes incubation with compound,

followed by motility read-out. Both protocols allow sperm motility to be measured (0.5 sec

time-lapse movies allow tracking of cells and calculation of sperm kinematics). In addition, the

capacitation assay also scores hyperactivation (i.e. distinct movement patterns concomitant

with capacitation which are crucial for fertilization) (Fig 2A).

Marker size indicates false discovery rate (FDR). (G) Enriched terms within the biggest subclusters in (E). Redundant terms have been filtered using

Cytoscape (cutoff 0.5). Color matches subcluster color in (E).

https://doi.org/10.1371/journal.pone.0297666.g001

Fig 2. Example assay data from STB compounds. (A) Motility assay example images. Tracked sperm cells treated with DMSO (top row), LRRK2-IN-1

(middle row) or Tafenonquine (bottom row). First (0 sec) and last frame (0.5 sec) of time-lapse movies are shown. Non-capacitating conditions (3h

incubation with compound) are shown next to capacitating conditions (30 min incubation with compound). Compound concentration was 10 uM for all

shown conditions. Colors in the non-capacitating assay indicate immotile sperm (pink), non-progressively motile sperm (lavender) or progressively motile

sperm (teal). Colors in the capacitation assay indicate hyperactive sperm (green) or non-hyperactive sperm (blue). Scale bars 50 um. (B) Acrosome assay

examples. Histogram depicting number of events and shift in intensity in the PNA acrosome channel (AR+ population). Acrosome assay protocol 1 (3h

incubation with compound, no agonist addition; left panel) and acrosome assay protocol 2 (3h incubation with compound, 1h with agonist; right panel).

Comparing DMSO (top row), LRRK2-IN-1 (middle row) and Tafenoquine (bottom row). Compound concentration was 10 mM for all shown conditions.

Dashed line indicates gate (AR+ population).

https://doi.org/10.1371/journal.pone.0297666.g002
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The acrosome assays utilize a high-throughput flow cytometer (S1 Fig) to score for com-

pounds inducing the acrosome reaction, using peanut agglutinin conjugated to a fluorescent

dye to label the outer acrosomal membrane. We have developed two different screening proto-

cols, named ‘acrosome 1’ and ‘acrosome 2’ (S1 Fig). Both protocols are capable of measuring

induction of the acrosome reaction upon compound incubation. However, in the acrosome 2

assay, a mixture of physiological agonists of the acrosome reaction is used after cells have been

incubated with compounds for 3h under conditions that support capacitation [63]. This addi-

tion allowed measurement of inhibition of acrosome reaction (Fig 2B).

We also tested the effect of STB compounds on sperm viability using a complementary live-

cell flow-cytometer approach and propidium iodide, which does not permeate intact cell

membranes (S1 Fig). In this assay, cells are incubated for 3h with compound in non-capacitat-

ing media, prior to viability assessment.

Finally, we also profiled each STB compound for general cytotoxicity in two cell-lines

(HeLa and HepG2). The HeLa-based assay uses the cell painting assay [11], while the HepG2

assay utilizes a resazurin based viability read-out [64]. To ensure usability of STB compounds,

we also measured aqueous solubility. An overview of additional assays is given in S1 Fig.

This multi-assay compound profiling dataset reveals a broader picture of the action of indi-

vidual compounds than has been available before and helps find phenotypic similarities

induced by compounds. Using unsupervised clustering we observed clusters of compounds

with a significant reduction of sperm motility and/or increased amounts of acrosome reacted

cells (e.g. Alexidine dihydrochloride, Tafenoquin or A23187) (Fig 3A). Some of these com-

pounds also show significant levels of cytotoxicity in HeLa and/or HepG2 cells as well as

decreased sperm viability suggesting that their effect on motility and acrosome reaction is due

to toxic effects on spermatozoa. However, other clusters show a significantly increased acro-

some reaction and hyperactive motility but do not show effects on sperm viability or general

cytotoxicity (e.g. LRRK2-IN-1, Clofarabine, Linsitinib, Trequinsin). One example, LRRK2-IN-

1, which enhances motility (progressive and hyperactivated), and increases the number of

acrosome reacted cells in our acrosome assay 2 (Fig 2) has been described as a selective inhibi-

tor of LRRK2 kinase, which is involved in Parkinson’s disease [65]. This compound shares

some structural similarities with two kinase inhibitors in the STB, which decrease sperm motil-

ity: Compound 19, described as a potent Testis-Specific Serine/Threonine Kinase 2 (TSSK2)

inhibitor [49] and CZC 25146, annotated as a potent LRRK2 inhibitor (Fig 3B and 3C). These

three compounds show different activity profiles in our profiling assays, suggesting they may

target different pathways in sperm. Interestingly, LRRK2-IN-1 only increases acrosome

reacted cells in conjunction with the agonist cocktail (acrosome assay 2), while without there is

no change, highlighting the potential of our assays to pick up different effects of the same com-

pounds, when the assay condition has been slightly modified (Fig 2B).

Interestingly, we observed that a number of compounds show weak or no effects in our

assays (S2 Fig; grey datapoints). Given these compounds were sourced from publications,

patents, and screening systems that mostly report activity in sperm, we have retained them

in the toolbox as they may score in other assays or at other concentrations. Alternatively if

they do not score in assays of sperm function, their inclusion serves to correct previous

results. Either way, this highlights a key strength of our approach. The STB, and the use of

high-throughput assays allows the profiling of compounds using the same assay conditions

(i.e. buffer system, incubation time and screening concentration) on a large number of

human spermatozoa, thus providing reproducible, quantitative assay results. This combina-

tion also facilitates the comparison of the effects of the STB compounds between different

physiological states (S1 Fig), in a standardised, rapid, and quantitative manner that has not

been previously possible in the field of sperm biology. This standardized approach provides

PLOS ONE Sperm Toolbox—Small molecule library for drug discovery

PLOS ONE | https://doi.org/10.1371/journal.pone.0297666 February 20, 2024 7 / 16

https://doi.org/10.1371/journal.pone.0297666


Fig 3. Visualization of assay results on STB compounds. (A) Heatmap showing standardized results (z-score) for every Toolbox compound

screened at 30 μM in selected assays: Acrosome 2 (3h with compound then induction with acrosome reaction using an agonist mix), Motility

Hyperactive (30 min capacitation then 30 min incubation with compound), Motility Progressive (3h incubation with compounds under non-

capacitating conditions), Motility Total (3h incubation with compound under non-capacitating conditions)), Solubility (aqueous solubility of

compounds after 24h incubation), Sperm viability (3h with compound then propidium iodide assay), Toxicity HeLa (24h compound incubation
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an excellent starting point to establish control compounds and assay conditions for novel

drug discovery campaigns related to contraception and infertility. We provide the complete

dataset (see Supporting information) as well as web interface for data analysis (https://

spermtoolbox.shinyapps.io/spermtoolbox/).

Conclusion

This work represents the first version of the STB. We aim to release annual updates with newly

published compounds that modulate the function of spermatozoa. In our next release we aim

to include compounds that were published during the collection of the data for this first release

e.g., a sAC inhibitor TDI-11861 [4], a CatSper inhibitor RU1968 [66], a SLO3 inhibitor [67] or

other contributions from the research community. The STB is a reference for compounds that

modulate sperm function and can become an important resource for benchmarking new

assays and new compounds. The STB allows comparison of compounds side-by-side using the

same assay conditions therefore mitigating the effects of different conditions e.g., buffers, cell

populations which may give erroneous results. We aim to use the STB as a reference in our

screens and to define as many factors targeted by STB compounds as possible that are critical

for sperm function.

Materials and methods

Ethical approval

Written consent was obtained from each donor in accordance with under local ethical

approval (University of Dundee, SMED REC 20/45). Donors for the study were sourced from

July 1, 2020 until 31 March, 2023.

Sperm handling

Donated human spermatozoa with normal semen characteristics (concentration, motility;

WHO 2010) from healthy volunteers with no known fertility problems were used in this study.

Samples were obtained by masturbation after� 48 h of sexual abstinence, liquefied for 30 min

at 37˚C, and processed using density gradient centrifugation, to separate cells using 40/80%

Percoll (Sigma Aldrich, UK) fractions. Every experiment has been performed on pooled sper-

matozoa from� 3 donors each.

For experiments in non-capacitating conditions, we used a buffer system slightly modified

from [23] using Minimal Essential Medium Eagle (Sigma), supplemented with HEPES (1 M

solution, Gibco), sodium lactate (DL-solution, Sigma), sodium pyruvate (100 mM solution,

Gibco) and bovine serum albumin (7.5% solution, Sigma).

For experiments in capacitating conditions, we used a buffer system slightly modified from

the HTF from [63] to a final composition of 97.8 mM NaCl, 4.69 mM KCl, 0.2 mM MgSO4,

0.37 mM KH2PO4, 2.04 mM CaCl2, 0.33 mM Na-pyruvate, 12.4 mM Na-lactate, 2.78 mM glu-

cose, 21 mM HEPES, 25 mM NaHCO3 and 3 mg/mL BSA. All buffer components were sup-

plied by Sigma-Aldrich unless otherwise stated and all buffer systems were adjusted to pH 7.4.

then cell painting assay), Toxicity HepG2 (70h incubation with compound then resaruzin based assay). Heatmap color indicates decrease (blue) or

increase (red). (B) UMAP plot showing groups of compounds with similar assay profile. Color indicates annotated sperm function. (C) Structures

and zoom-in of three compounds with related structures described to modulate LRRK2 kinase but appear to have different effects on sperm

function.

https://doi.org/10.1371/journal.pone.0297666.g003
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Compound handling

Compounds were purchased from vendors indicated in the source publications. 10 mM stock

solutions in DMSO were generated. Quality control of each compound has been performed

(HPLC-MS and NMR).

Compound plates were generated using 10 mM stock solutions of each STB compound in

Echo 384-LDV plates (LP-0200). Prior to running experiments, assay ready plates have been

generated using Echo acoustic dispensers (550/555). Each compound was screened at 10 and

30 μM final concentration. Plate types used for assays: Motility, HeLa cell painting and

Sperm viability (PerkinElmer 384-well PhenoPlate), Acrosome (Greiner 384-PP V-bottom

plates).

Motility assays

Motility assay (Non-capacitating). Cells were rested for 1 h post density gradient centri-

fugation. 10 μL assay buffer was dispensed into assay ready plates, plates were put onto a

shaker instrument for 30 seconds using 1,000 rpm, followed by a short pulse centrifugation.

Plates were incubated for 15–30 mins at 37˚C prior to addition of 10 μL of pooled cells (at 1

M/mL concentration). Plates were then incubated in a Yokogawa CV7000 microscope set at

37˚C for 10 min prior to imaging. Imaging a 384-well plate requires� 20 min using the follow-

ing settings: 2 positions per well, 0.5 sec timelapse movies (3x binning; 11 ms exposure time,

22 ms interval time, 500 intervals). A second and a third timepoint was recorded after 3 h, and

6 h incubation at 37˚C. Data has been processed as described in [8]. Assay results are from 5

separate donor pools.

Capacitation assay. Cells were capacitated for 30 min at 37˚C and 5% CO2. 10 μL assay

buffer was dispensed into assay ready plates, plates were put onto a shaker instrument for 30

seconds using 1,000 rpm, followed by a short pulse centrifugation. Plates were incubated for

15–30 mins at 37˚C and 5% CO2 prior to addition of 10 μL of pooled cells (at 1 M/mL concen-

tration). This was followed by a 20 min compound incubation step at 37˚C and 5% CO2. Plates

were then incubated in our CV7000 microscope set at 37˚C and 5% CO2 for 10 min prior to

imaging. Imaging a 384-well plate requires� 20 min using the following settings: 2 positions

per well, 0.5 sec timelapse movies (3x binning; 11 ms exposure time, 22 ms interval time, 500

intervals). Data has been processed as described in [8]. Assay results are from 8 separate donor

pools.

Acrosome assays. In both experimental protocols, 20 μL of pooled cells (at 1 M/mL con-

centration) were capacitated for 3 h in presence of compounds at 37˚C and 5% CO2. In proto-

col a, cells were then stained with PNA-Alexa647 (ThermoFisher, 1 mg/mL, final dilution

1:1000) and Hoechst dye for 30 min at 37˚C and 5% CO2, followed by 10 min fixation at RT by

adding 20 μL of 4% paraformaldehyde (Sigma) in PBS. In mode b, a cocktail of progesterone,

prostaglandin A and NH4Cl was added to all compound wells and incubated for an additional

1 h at 37˚C and 5% CO2 to induce acrosome reaction. This was followed by fixation and stain-

ing protocol as for mode a. In both protocols fixatives and stains were removed and cells were

resuspended in PBS, using a 405 platewasher. Plates were then measured on a Novocyte

Advanteon high-throughput flow cytometer. Gating of data has been performed using the flow

cytometer software to export counts of gated populations. The Acrosome 1 protocol using 3h

incubation with compounds was run in 7 separate donor pools. The Acrosome 2 protocol

using 3h incubation with compound followed by 1h stimulation of acrosome reaction was run

in 5 separate donor pools.

Sperm viability assay. Cells were incubated with compounds for a total of 3h at 37˚C. 20

min prior, propidium iodide was added (1.5 mM solution, Sigma, final dilution 1:2000). Plates
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were analysed using a Satorius iQue Screener with settings to allow for a sampling time of�30

min per 384-well plate. Gating of data has been performed using the flow cytometer software

to export counts of gated populations. This assay was tested in 5 separate donor pools.

HeLa cell painting. Cell were incubated with compounds for 24h. Cell painting was per-

formed after [11] with modifications suggested in [68]:

• 10 μL of MitoTracker (Life Technologies, M22426, 1 mM stock in DMSO as recommended

by the vendor) is added to 50 μL of media (1:2000 final dilution)

• Phalloidin-Alexa594 (Life Technologies, A12381, 66 μM stock in methanol as recommended

by the vendor, 1:500 final dilution)

• WGA-Alexa594 (Life Technologies, W11262, 5 mg/mL stock, 1:250 final dilution) was used

• DAPI (5 mg/mL stock; 1:1000 final dilution) was used to stain DNA

• 20 μL of staining solution was used

• PBS was used for washing steps

HepG2 cytotoxicity assay. HepG2 assay was performed as described previously [64].

Aqueous solubility. The aqueous solubility of test compounds was measured using

UHPLC, as previously described in [69].

Data analysis. For cell painting imaging data, plates of images were imported into

OMERO [70]. Cell segmentation and feature extraction were performed using CellProfiler 3

[71] and using instructions from [11] to normalize data. Timelapse data of motility assays

was processed as previously described [8]. Acrosome flow cytometry data was processed

using NovoCyte Express (PerkinElmer), to gate out background debris, select for single cells

and calculate percentage values of acrosome positive events. Sperm viability flow cytometry

data was processed using iQue Forecyt (Satorius) to gate out background debris, select for

single cells and calculate percentage values of propidium iodide positive events. For all

sperm functional assays, data was normalized to DMSO control wells. Each plate had 16

DMSO wells. A median value of all 16 wells was used to calculated percentage change

(pct_ch = ((value / DMSO_median) -1) * 100). For sperm viability we calculated fold-change

(fc = 1 − (value / DMSO_median)). For each compound we calculated a p-value using a

Welch’s t-test implemented in scipy (scipy.stats.ttest_ind) comparing a compounds effect to

DMSO controls.

The following packages have been used for data analysis and visualization:

R: Tidyverse, plotly, pHeatmap

Python: Pandas, NumPy, SciPy, Seaborn, Matplotlib, UMAP

Supporting information

S1 Fig. STB assay protocols. (a) Diagram showing sperm motility assays run on high-content

microscope with compound incubation time/read-out time. Motility assays were run under

non-capacitating conditions, with a 1 hour recovery phase after preparation of spermatozoa.

Capacitation assays were run under capacitating conditions. Spermatozoa are capacitated for

30 min prior to compound incubation. (b) Diagram showing assays run on high-throughput

flow cytometer to measure acrosome status and sperm viability. Incubation time with com-

pound, agonist and read-out times are indicated. Acrosome assays run under capacitating
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conditions. Sperm viability assay run under non-capacitating condition. (c) Additional assays

performed on sperm toolbox compounds.

(TIF)

S2 Fig. Volcano plots of acrosome, capacitation and motility assays. Upper panel indicates

10 μM, lower plot panels indicate 30 μM. Incubation times for assays are 3h with compound

for Acrosome 2 assay and Motility (non-capacitating) (PM = progressive motility), and 30

min for the Capacitation assay (HA = hyperactive motility, PM = progressive motility).

Dotted line indicates significance levels of 0.05. Any point above dotted line is indicated in

magenta. Buffer conditions are indicated below Plot title (capacitating vs. non-capacitat-

ing).

(TIF)

S1 Table. STB assay data. Supporting data underlying the findings in this article.

(CSV)
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