78 research outputs found

    Combined Tevatron upper limit on gg->H->W+W- and constraints on the Higgs boson mass in fourth-generation fermion models

    Get PDF
    Report number: FERMILAB-PUB-10-125-EWe combine results from searches by the CDF and D0 collaborations for a standard model Higgs boson (H) in the process gg->H->W+W- in p=pbar collisions at the Fermilab Tevatron Collider at sqrt{s}=1.96 TeV. With 4.8 fb-1 of integrated luminosity analyzed at CDF and 5.4 fb-1 at D0, the 95% Confidence Level upper limit on \sigma(gg->H) x B(H->W+W-) is 1.75 pb at m_H=120 GeV, 0.38 pb at m_H=165 GeV, and 0.83 pb at m_H=200 GeV. Assuming the presence of a fourth sequential generation of fermions with large masses, we exclude at the 95% Confidence Level a standard-model-like Higgs boson with a mass between 131 and 204 GeV.We combine results from searches by the CDF and D0 collaborations for a standard model Higgs boson (H) in the process gg→H→W+W- in pp̅ collisions at the Fermilab Tevatron Collider at √s=1.96  TeV. With 4.8  fb-1 of integrated luminosity analyzed at CDF and 5.4  fb-1 at D0, the 95% confidence level upper limit on σ(gg→H)×B(H→W+W-) is 1.75 pb at mH=120  GeV, 0.38 pb at mH=165  GeV, and 0.83 pb at mH=200  GeV. Assuming the presence of a fourth sequential generation of fermions with large masses, we exclude at the 95% confidence level a standard-model-like Higgs boson with a mass between 131 and 204 GeV.Peer reviewe

    Measurement of the Ratio of b Quark Production Cross Sections in Antiproton-Proton Collisions at 630 GeV and 1800 GeV

    Full text link
    We report a measurement of the ratio of the bottom quark production cross section in antiproton-proton collisions at 630 GeV to 1800 GeV using bottom quarks with transverse momenta greater than 10.75 GeV identified through their semileptonic decays and long lifetimes. The measured ratio sigma(630)/sigma(1800) = 0.171 +/- .024 +/- .012 is in good agreement with next-to-leading order (NLO) quantum chromodynamics (QCD)

    A next-generation liquid xenon observatory for dark matter and neutrino physics

    Get PDF
    The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector

    Measurement of the ratio of the production cross sections times branching fractions of B c ±  → J/ψπ ± and B± → J/ψK ± and ℬ B c ± → J / ψ π ± π ± π ∓ / ℬ B c ± → J / ψ π ± B(Bc±J/ψπ±π±π)/B(Bc±J/ψπ±) \mathrm{\mathcal{B}}\left({\mathrm{B}}_{\mathrm{c}}^{\pm}\to \mathrm{J}/\psi {\pi}^{\pm }{\pi}^{\pm }{\pi}^{\mp}\right)/\mathrm{\mathcal{B}}\left({\mathrm{B}}_{\mathrm{c}}^{\pm}\to \mathrm{J}/\psi {\pi}^{\pm}\right) in pp collisions at s = 7 s=7 \sqrt{s}=7 TeV

    Full text link

    A novel computational method for modelling stochastic advection in heterogeneous media

    No full text
    The paper is devoted to a new computational method for problems of transport in highly non-uniform media. In particular, the method is applied to the problem of anomalous contaminant transport in a field with a randomly distributed permeability, which was modelled as a stochastic advection process governed by a stochastic advection model. The stochastic advection model is used to generate different realisations of micro-dispersion parameters required for direct numerical simulations. The new numerical method combines the merits of finite-volume and finite-difference approaches and is demonstrated to be efficient and robust in several benchmark advection tests. For the stochastic advection problem considered the results of the new computational method are in a good agreement with analytical predictions available for different stochastic advection regimes.</p
    corecore