34 research outputs found
Seismic Survey of Buried Bedrock Topography in the Cannon River Valley
A seismic survey of the Cannon River Valley between Northfield and Cannon Falls, Minnesota, revealed the presence of a 30-meter deep buried river valley under or near the Cannon River. The buried channel emanates from the Spring Creek Valley in Northfield, makes a 90-degree turn to the northeast at the confluence of Spring Creek and the Cannon River. and follows the Cannon to Cannon Falls. Buried tributary valleys appear to join the main buried channel at several locations. There may be buried tributary valleys or a network of abandoned Cannon River channels eroded into bedrock under the lake plain north of Lake Byllesby. The material of this survey also was reported by Timothy D. Vick, one of the three researchers, at the 1980 meeting of the Institute on Lake Superior Geology
A Vegetation and Fire History of Lake Titicaca since the Last Glacial Maximum
Fine-resolution fossil pollen and charcoal analyses reconstruct a vegetation and fire history in the area surrounding Lake Titicaca (3810 m, Peru/Bolivia) since ca. 27,500 cal yr BP (hereafter BP). Time control was based on 26 accelerator mass spectrometer (AMS) radiocarbon dates. Seventeen AMS dates and 155 pollen and charcoal samples between ca. 17,500 BP and ca. 3,100 BP allow a centennial-scale reconstruction of deglacial and early- to mid-Holocene events. Local and regional fire signals were based on the separation of two charcoal size fractions, â„180 ÎŒm and 179â65 ÎŒm. Charcoal abundance correlated closely with the proportion of woody taxa present in the pollen spectra. Little or no pollen was detected in the sedimentary record prior to ca. 21,000 BP. Very cold climatic conditions prevailed, with temperatures suggested to be at least 5â8°C cooler than present. Increases in pollen concentration suggest initial warming at ca. 21,000 BP with a more significant transition toward deglaciation ca. 17,700 BP. Between 17,700 BP and 13,700 BP, puna brava is progressively replaced by puna and sub-puna elements. The most significant changes between the Pleistocene and the Holocene floras were largely complete by 13,700 BP, providing an effective onset of near-modern conditions markedly earlier than in other Andean records. Fire first occurs in the catchment at ca. 17,700 BP and becomes progressively more important as fuel loads increase. No evidence is found of a rapid cooling and warming coincident with the Younger Dryas chron. A dry event between ca. 9,000 BP and 3,100 BP, with a peak between 6,000 and 4,000 BP, is inferred from changes in the composition of aquatics, and the marsh community as pollen of Cyperaceae is replaced by Poaceae, Apiaceae, Plantago and the shrub Polylepis. Human disturbance of the landscape is evident in the pollen spectra after ca. 3,100 BP with the appearance of weed species
U-Th dating of lake sediments: Lessons from the 700 ka sediment record of Lake JunĂn, Peru
Deep sediment cores from long-lived lake basins are fundamental records of paleoenvironmental history, but the power of these reconstructions has been often limited by poor age control. Uranium-thorium (U-Th) dating has the potential to fill a gap in current geochronological tools available for such sediment archives. We present our systematic approach to U-Th date carbonate-rich sediments from the âŒ100 m drill core from Lake JunĂn, Peru. The results form the foundation of an age-depth model spanning âŒ700 kyrs. High uranium concentrations (0.3â4 ppm) of these sediments allow us to date smaller amounts of material, giving us the opportunity to improve sample selection by avoiding detrital contamination, the greatest factor limiting the success of previous U-Th dating efforts in other lake basins. Despite this advantage, the dates from 174 analyses on 55 bulk carbonate samples reveal significant scatter that cannot be resolved with traditional isochrons, suggesting that at least some of the sediments have not remained closed systems. To understand the source of noise in the geochronological data, we first apply threshold criteria that screen samples by their U/Th ratio, reproducibility, and ÎŽÂČÂłâŽU_(initial) value. We then compare these results with facies types, trace element concentrations, carbonate and total organic carbon content, color reflectance, mineralogy, and ostracode shell color to investigate the causes of open system behavior. Alongside simulations of the isotopic evolution of our samples, we find that the greatest impediment to U-Th dating of these sediments is not detrital contamination, but rather post-depositional remobilization of uranium. Examining U-Th data in these contexts, we identify samples that have likely experienced the least amount of alteration, and use dates from those samples as constraints for the age-depth model. Our work has several lessons for future attempts to U-Th date lake sediments, namely that geologic context is equally as important as the accuracy and precision of analytical measurements. In addition, we caution that significant geologic scatter may remain undetected if not for labor intensive tests of reproducibility achieved through replication. As a result of this work, the deep sediment core from Lake JunĂn is the only continuous record in the tropical Andes spanning multiple glacial cycles that is constrained entirely by independent radiometric dates
The genetic architecture of the human cerebral cortex
The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
Recommended from our members
The impact of PICALM genetic variations on reserve capacity of posterior cingulate in AD continuum
Phosphatidylinositolbinding clathrin assembly protein (PICALM) gene is one novel genetic player associated with late-onset Alzheimerâs disease (LOAD), based on recent genome wide association studies (GWAS). However, how it affects AD occurrence is still unknown. Brain reserve hypothesis highlights the tolerant capacities of brain as a passive means to fight against neurodegenerations. Here, we took the baseline volume and/or thickness of LOAD-associated brain regions as proxies of brain reserve capacities and investigated whether PICALM genetic variations can influence the baseline reserve capacities and the longitudinal atrophy rate of these specific regions using data from Alzheimerâs Disease Neuroimaging Initiative (ADNI) dataset. In mixed population, we found that brain region significantly affected by PICALM genetic variations was majorly restricted to posterior cingulate. In sub-population analysis, we found that one PICALM variation (C allele of rs642949) was associated with larger baseline thickness of posterior cingulate in health. We found seven variations in health and two variations (rs543293 and rs592297) in individuals with mild cognitive impairment were associated with slower atrophy rate of posterior cingulate. Our study provided preliminary evidences supporting that PICALM variations render protections by facilitating reserve capacities of posterior cingulate in non-demented elderly
Conversion Discriminative Analysis on Mild Cognitive Impairment Using Multiple Cortical Features from MR Images
Neuroimaging measurements derived from magnetic resonance imaging provide important information required for detecting changes related to the progression of mild cognitive impairment (MCI). Cortical features and changes play a crucial role in revealing unique anatomical patterns of brain regions, and further differentiate MCI patients from normal states. Four cortical features, namely, gray matter volume, cortical thickness, surface area, and mean curvature, were explored for discriminative analysis among three groups including the stable MCI (sMCI), the converted MCI (cMCI), and the normal control (NC) groups. In this study, 158 subjects (72 NC, 46 sMCI, and 40 cMCI) were selected from the Alzheimer's Disease Neuroimaging Initiative. A sparse-constrained regression model based on the l2-1-norm was introduced to reduce the feature dimensionality and retrieve essential features for the discrimination of the three groups by using a support vector machine (SVM). An optimized strategy of feature addition based on the weight of each feature was adopted for the SVM classifier in order to achieve the best classification performance. The baseline cortical features combined with the longitudinal measurements for 2 years of follow-up data yielded prominent classification results. In particular, the cortical thickness produced a classification with 98.84% accuracy, 97.5% sensitivity, and 100% specificity for the sMCIâcMCI comparison; 92.37% accuracy, 84.78% sensitivity, and 97.22% specificity for the cMCIâNC comparison; and 93.75% accuracy, 92.5% sensitivity, and 94.44% specificity for the sMCIâNC comparison. The best performances obtained by the SVM classifier using the essential features were 5â40% more than those using all of the retained features. The feasibility of the cortical features for the recognition of anatomical patterns was certified; thus, the proposed method has the potential to improve the clinical diagnosis of sub-types of MCI and predict the risk of its conversion to Alzheimer's disease
Quantitative 18F-AV1451 Brain Tau PET Imaging in Cognitively Normal Older Adults, Mild Cognitive Impairment, and Alzheimer's Disease Patients
Recent developments of tau Positron Emission Tomography (PET) allows assessment of regional neurofibrillary tangles (NFTs) deposition in human brain. Among the tau PET molecular probes, 18F-AV1451 is characterized by high selectivity for pathologic tau aggregates over amyloid plaques, limited non-specific binding in white and gray matter, and confined off-target binding. The objectives of the study are (1) to quantitatively characterize regional brain tau deposition measured by 18F-AV1451 PET in cognitively normal older adults (CN), mild cognitive impairment (MCI), and AD participants; (2) to evaluate the correlations between cerebrospinal fluid (CSF) biomarkers or Mini-Mental State Examination (MMSE) and 18F-AV1451 PET standardized uptake value ratio (SUVR); and (3) to evaluate the partial volume effects on 18F-AV1451 brain uptake.Methods: The study included total 115 participants (CN = 49, MCI = 58, and AD = 8) from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Preprocessed 18F-AV1451 PET images, structural MRIs, and demographic and clinical assessments were downloaded from the ADNI database. A reblurred Van Cittertiteration method was used for voxelwise partial volume correction (PVC) on PET images. Structural MRIs were used for PET spatial normalization and region of interest (ROI) definition in standard space. The parametric images of 18F-AV1451 SUVR relative to cerebellum were calculated. The ROI SUVR measurements from PVC and non-PVC SUVR images were compared. The correlation between ROI 18F-AV1451 SUVR and the measurements of MMSE, CSF total tau (t-tau), and phosphorylated tau (p-tau) were also assessed.Results:18F-AV1451 prominently specific binding was found in the amygdala, entorhinal cortex, parahippocampus, fusiform, posterior cingulate, temporal, parietal, and frontal brain regions. Most regional SUVRs showed significantly higher uptake of 18F-AV1451 in AD than MCI and CN participants. SUVRs of small regions like amygdala, entorhinal cortex and parahippocampus were statistically improved by PVC in all groups (p < 0.01). Although there was an increasing tendency of 18F-AV-1451 SUVRs in MCI group compared with CN group, no significant difference of 18F-AV1451 deposition was found between CN and MCI brains with or without PVC (p > 0.05). Declined MMSE score was observed with increasing 18F-AV1451 binding in amygdala, entorhinal cortex, parahippocampus, and fusiform. CSF p-tau was positively correlated with 18F-AV1451 deposition. PVC improved the results of 18F-AV-1451 tau deposition and correlation studies in small brain regions.Conclusion: The typical deposition of 18F-AV1451 tau PET imaging in AD brain was found in amygdala, entorhinal cortex, fusiform and parahippocampus, and these regions were strongly associated with cognitive impairment and CSF biomarkers. Although more deposition was observed in MCI group, the 18F-AV-1451 PET imaging could not differentiate the MCI patients from CN population. More tau deposition related to decreased MMSE score and increased level of CSF p-tau, especially in ROIs of amygdala, entorhinal cortex and parahippocampus. PVC did improve the results of tau deposition and correlation studies in small brain regions and suggest to be routinely used in 18F-AV1451 tau PET quantification
Andean glacial lakes and climate variability since the last glacial maximum
Sediment cores from glacial lakes in the tropical-subtropical Andes provide a nearly continuous record of late glacial and Holocene paleoclimates. Basal radiocarbon dates from lakes and peats suggest that the last glacial maximum significantly predated the global maximum at 18 14C kyr BP. Most lakes have basal radiocarbon ages of <13 14C kyr BP, implying that there was a late-Pleistocene phase of glaciation that may have culminated about 14 14C kyr BP. Late glacial advances are recorded in several sediment records from lakes and by 10 14C kyr BP glaciers had retreated to within their modem limits. Mid-Holocene aridity is recorded in the stratigraphy from a number of lakes including Lago Titicaca. This phase of aridity was followed by rising lake levels and neoglaciation in the late Holocene.Les lacs glaciaires et la variabilité climatique dans les Andes depuis le dernier maximum glaciaire.
Des carottages rĂ©alisĂ©s dans des lacs glaciaires des Andes tropicales et subtropicales ont fourni des registres palĂ©oclimatiques continus couvrant le Dernier Maximum Glaciaire et l'HolocĂšne. Des datations 14C sur sĂ©diments lacustres et sur tourbes indiquent que le maximum de la derniĂšre glaciation s'est produit antĂ©rieurement au Dernier Maximum Glaciaire Global (18 ka BP). La plupart des lacs ont un Ăąge infĂ©rieur Ă 13 ka BP, ce qui signifie que l'avancĂ©e des glaciers correspondant au PleistocĂšne terminal aurait culminĂ© aux alentours de 14 ka BP. Des avancĂ©es durant le Tardi-glaciaire sont enregistrĂ©es dans plusieurs sites lacustres. Ă partir de 10 ka BP, les glaciers ont reculĂ© au-delĂ de leurs limites actuelles. La sĂ©cheresse de l'HolocĂšne moyen est repĂ©rĂ©e dans la stratigraphie de nombre de lacs, y compris le lac Titicaca. Cette phase d'ariditĂ© est suivie par une remontĂ©e des niveaux lacustres et une rĂ©avancĂ©e des glaciers Ă la fin de l'HolocĂšne.Lagos glaciares andinos y variabilidad climĂĄtica desde el Ășltimo
mĂĄximo glacial.
Testigos de sedimentos de los lagos glaciares en los Andes tropicales/subtropicales proporcionan registros continuos de los paleoclimas del Ășltimo glacial superior y del Holoceno. Dataciones del radiocarbon de los sedimentos profundos en los lagos y de las turberas indican que el mĂĄximo del Ășltimo glacial fue antes del mĂĄximo glacial global con una fecha de 18 14C ka BP. La mayorĂa de los lagos tienen una antigĂŒedad menor de 13 14C ka BP, lo que significa que hubo una fase de glaciaciĂłn del Pleistoceno superior culminada alrededor de 14 14C ka BP. Los avances durante el glacial superior son indicados en varios testigos de sedimentos de los lagos y, despuĂ©s de 10 14C ka BP, los glaciares quedaron dentro de sus lĂmites actuales. Una sequĂa durante el Holoceno medio estĂĄ registrada en la estratigrafĂa de varios lagos, incluyendo el Lago Titicaca. Los niveles de los lagos estaban subiendo y habĂa neoglaciaciĂłn en el Holoceno superior despuĂ©s de la fase de sequĂa en el Holoceno medio.Seltzer Geoffrey O., Rodbell Donald T., Abbott Mark. Andean glacial lakes and climate variability since the last glacial maximum. In: Bulletin de l'Institut Français d'Ătudes Andines, tome 24, N°3, 1995. Eaux, glaciers & changements climatiques dans les Andes tropicales. pp. 539-549