38 research outputs found

    Association between sleep-disordered breathing and breast cancer aggressiveness

    Get PDF
    Background Sleep-disordered breathing (SDB) has been associated with cancer aggressiveness, but studies focused on specific tumors are lacking. In this pilot study we investigated whether SDB is associated with breast cancer (BC) aggressiveness. Methods 83 consecutive women <65 years diagnosed with primary BC underwent a home respiratory polygraphy. Markers of SDB severity included the apnea-hypopnea index (AHI) and the 4% oxygen desaturation index (ODI4). The Ki67 proliferation index, lack of hormone receptors (HR-), Nottingham Histological Grade (NHG), and tumor stage were used as markers of BC aggressiveness. The association between SDB and molecular subtypes of BC was also assessed. Results The mean (SD) age was 48.8 (8.8) years and body mass index was 27.4 (5.4) Kg/m2. 42 women (50.6%) were post-menopausal. The median (IQR) AHI was 5.1 (2–9.4), and ODI4 was 1.5 (0.5–5.8). The median (IQR) AHI did not differ between the groups with Ki67>28% and Ki6728% and Ki67<29% (51.2% vs 52.3%, p = 0.90), HR- and HR+ (58.3% vs 49.1%, p = 0.47), NHG categories (p = 0.89), different tumor stages (p = 0.71), or molecular subtypes (p = 0.73). These results did not change when the ODI4 was used instead of the AHI. Conclusion Our results do not support an association between the presence or severity of SDB and BC aggressiveness.Asociación de Neumología y Cirugía Torácica del Sur (NEUMOSUR) 1/201

    Metabolite production and/or gut microbiota-associated metabotypes?

    Get PDF
    Funding Information: This research was supported by the Project PID2019-103914RB-I00 from the Ministry of Science and Innovation (MICINN, Spain) and by Fundación Séneca de la Región de Murcia (Spain), grant number 20880/PI/18. J.A.G.-B. was supported by a Standard European Marie Curie Fellowship from the European Commission. This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement no. 838991. A.C.M. and C.E.I.-A. are the holders of predoctoral grants from MINECO (grant number BES-2016-078098) and MICINN (grant number FPU18/03961) (Spain), respectively. Publisher Copyright: © 2021 The Royal Society of Chemistry.Despite the high human interindividual variability in response to (poly)phenol consumption, the cause-and-effect relationship between some dietary (poly)phenols (flavanols and olive oil phenolics) and health effects (endothelial function and prevention of LDL oxidation, respectively) has been well established. Most of the variables affecting this interindividual variability have been identified (food matrix, gut microbiota, single-nucleotide-polymorphisms, etc.). However, the final drivers for the health effects of (poly)phenol consumption have not been fully identified. At least partially, these drivers could be (i) the (poly)phenols ingested that exert their effect in the gastrointestinal tract, (ii) the bioavailable metabolites that exert their effects systemically and/or (iii) the gut microbial ecology associated with (poly)phenol metabolism (i.e., gut microbiota-associated metabotypes). However, statistical associations between health effects and the occurrence of circulating and/or excreted metabolites, as well as cross-sectional studies that correlate gut microbial ecologies and health, do not prove a causal role unequivocally. We provide a critical overview and perspective on the possible main drivers of the effects of (poly)phenols on human health and suggest possible actions to identify the putative actors responsible for the effects.publishersversionpublishe

    The role of selenium in shaping mice brain metabolome and selenoproteome through the gut-brain axis by combining metabolomics, metallomics, gene expression, and amplicon sequencing

    Get PDF
    Selenium (Se) is a trace element crucial for human health. Recently, the impact of Se supplementation on gut microbiota has been pointed out as well as its influence on the expression of certain selenoproteins and gut metabolites. This study aims to elucidate the link between Se supplementation, brain selenoproteins and brain metabolome as well as the possible connection with the gut-brain axis. To this end, an in vivo study with 40 BALB/c mice was carried out. The study included conventional ( n = 20) and mice model with microbiota depleted by antibiotics ( n = 20) under a regular or Se supplemented diet. Brain selenoproteome was determined by a transcriptomic/gene expression profile, while brain metabolome and gut microbiota profiles were accomplished by untargeted metabolomics and amplicon sequencing, respectively. The total content of Se in brain was also determined. The selenoproteins genes Dio and Gpx isoenzymes, SelenoH, SelenoI, SelenoT, SelenoV, and SelenoW and 31 metabolites were significantly altered in the brain after Se supplementation in conventional mice, while 11 selenoproteins and 26 metabolites were altered in microbiota depleted mice. The main altered brain metabolites were related to glyoxylate and dicarboxylate metabolism, amino acid metabolism, and gut microbiota that have been previously related with the gut-brain axis ( e.g., members of Lachnospiraceae and Ruminococcaceae families ). Moreover, specific associations were determined between brain selenoproteome and metabolome, which correlated with the same bacteria, suggesting an intertwined mechanism. Our results demonstrated the effect of Se on brain metabolome through specific selenoproteins gene expression and gut microbiota.This work was supported by the projects: PG2018-096608-B- C21 and PID2021-123073NB-C21 from the Spanish Ministry of Science and Innovation (MICIN) . Generación del Conocimiento . MCIN/ AEI /10.13039/50110 0 011033/ FEDER “Una manera de hacer Europa”, UHU-1256905 and UHU-202009 from the FEDER Andalusian Operative Program 2014-2020 (Ministry of Economy, Knowledge, Business and Universities, Regional Government of Andalusia, Spain). S.R.A. thanks the Spanish Ministry of Science and Innovation for a PhD scholarship ( BES-2016-076364 ). The authors are grateful to FEDER (European Community) for financial support, Grant UNHU13-1E-1611 . The authors would like to acknowledge the support from The Ramón Areces Foundation (ref. CIVP19A5918 ). Funding for open access charge: Universidad de Huelva / CBUA

    ICTV virus taxonomy profile: Ophioviridae

    Get PDF
    The Ophioviridae is a family of filamentous plant viruses, with single-stranded negative, and possibly ambisense, RNA genomes of 11.3-12.5 kb divided into 3-4 segments, each encapsidated separately. Virions are naked filamentous nucleocapsids, forming kinked circles of at least two different contour lengths. The sole genus, Ophiovirus, includes seven species. Four ophioviruses are soil-transmitted and their natural hosts include trees, shrubs, vegetables and bulbous or corm-forming ornamentals, both monocots and dicots. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Ophioviridae, which is available at http://www.ictv.global/report/ophioviridae.Instituto de Biotecnologia y Biologia MolecularFacultad de Ciencias Agrarias y Forestale

    ICTV Virus Taxonomy Profile: Ophioviridae

    Get PDF
    [EN] The Ophioviridae is a family of filamentous plant viruses, with single-stranded negative, and possibly ambisense, RNA genomes of 11.3-12.5 kb divided into 3-4 segments, each encapsidated separately. Virions are naked filamentous nucleocapsids, forming kinked circles of at least two different contour lengths. The sole genus, Ophiovirus, includes seven species. Four ophioviruses are soil-transmitted and their natural hosts include trees, shrubs, vegetables and bulbous or corm-forming ornamentals, both monocots and dicots. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Ophioviridae, which is available at http://www.ictv.global/report/ophioviridae.Production of this summary, the online chapter and associated resources was funded by a grant from the Wellcome Trust (WT108418AIA).Garcia, M.; Dal Bo, E.; Da Graca, JV.; Gago Zachert, SP.; Hammond, J.; Moreno, P.; Natsuaki, T.... (2017). ICTV Virus Taxonomy Profile: Ophioviridae. Journal of General Virology. 98(6):1161-1162. doi:10.1099/jgv.0.000836S1161116298

    ICTV virus taxonomy profile: Ophioviridae

    Get PDF
    The Ophioviridae is a family of filamentous plant viruses, with single-stranded negative, and possibly ambisense, RNA genomes of 11.3-12.5 kb divided into 3-4 segments, each encapsidated separately. Virions are naked filamentous nucleocapsids, forming kinked circles of at least two different contour lengths. The sole genus, Ophiovirus, includes seven species. Four ophioviruses are soil-transmitted and their natural hosts include trees, shrubs, vegetables and bulbous or corm-forming ornamentals, both monocots and dicots. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Ophioviridae, which is available at http://www.ictv.global/report/ophioviridae.Instituto de Biotecnologia y Biologia MolecularFacultad de Ciencias Agrarias y Forestale

    2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.

    Get PDF
    Correction to: 2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology (2021) 166:3567–3579. https://doi.org/10.1007/s00705-021-05266-wIn March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.This work was supported in part through Laulima Government Solutions, LLC prime contract with the US National Institute of Allergy and Infectious Diseases (NIAID) under Contract No. HHSN272201800013C. J.H.K. performed this work as an employee of Tunnell Government Services (TGS), a subcontractor of Laulima Government Solutions, LLC under Contract No. HHSN272201800013C. This work was also supported in part with federal funds from the National Cancer Institute (NCI), National Institutes of Health (NIH), under Contract No. 75N91019D00024, Task Order No. 75N91019F00130 to I.C., who was supported by the Clinical Monitoring Research Program Directorate, Frederick National Lab for Cancer Research. This work was also funded in part by Contract No. HSHQDC-15-C-00064 awarded by DHS S&T for the management and operation of The National Biodefense Analysis and Countermeasures Center, a federally funded research and development center operated by the Battelle National Biodefense Institute (V.W.); and NIH contract HHSN272201000040I/HHSN27200004/D04 and grant R24AI120942 (N.V., R.B.T.). S.S. acknowledges partial support from the Special Research Initiative of Mississippi Agricultural and Forestry Experiment Station (MAFES), Mississippi State University, and the National Institute of Food and Agriculture, US Department of Agriculture, Hatch Project 1021494. Part of this work was supported by the Francis Crick Institute which receives its core funding from Cancer Research UK (FC001030), the UK Medical Research Council (FC001030), and the Wellcome Trust (FC001030).S

    Mar Menor: una laguna singular y sensible. Evaluación científica de su estado.

    Get PDF
    Este libro recopila las aportaciones que equipos de investigación de la Universidad de Murcia, Universidad Politécnica de Cartagena, Instituto Geológico-Minero de España, Universidad de Alicante, el Instituto Español de Oceanografía y otros organismos hicieron en las Jornadas Científicas del Mar Menor, celebradas en diciembre de 2014.La información recogida en este libro se estructura en dos grandes bloques, uno de Biología y Ecología del Mar Menor (capítulos 1 al 8) y otro de Condiciones fisicoquímicas e impacto de actividades humanas en la laguna (capítulos 9 al 14). El primer bloque resume buena parte de los estudios ecológicos realizados en el Mar Menor, que han servido para mejorar su conocimiento y también para cambiar antiguas asunciones sobre la naturaleza y el funcionamiento de estos ecosistemas lagunares (Capítulo 1). El segundo capítulo muestra que esta laguna alberga en zonas someras de su perímetro hábitats fundamentales para mantener y conservar tanto especies migratorias como residentes, que es necesario conocer para paliar el impacto de las actividades humanas que les afectan. En este sentido la reducción de la carga de nutrientes y contaminantes orgánicos e inorgánicos que fluyen hacia el Mar Menor puede ayudar a preservar la laguna en mejores condiciones, bien sea tratando las escorrentías (plantas de tratamiento, humedales artificiales u otras técnicas) y recuperar este agua para uso agrícola o evitar su descarga en la laguna (Capítulo 3). Estas actuaciones serán clave para la conservación de especies emblemáticas como el caballito de mar (Capítulo 4) y reducir el impacto de las proliferaciones masivas de medusas que se producen en la laguna desde 1993 (Capítulo 5). En este mismo sentido los cambios acaecidos en la laguna han favorecido la incursión de invertebrados marinos alóctonos (Capítulo 6) y han afectado a la respuesta de la dinámica poblacional de las aves acuáticas a distintas escalas (Capítulo 7). Para completar este bloque se ofrece una perspectiva histórica de la importancia que ha tenido la investigación sobre acuicultura realizada en esta laguna, que ha servido de base para su gran desarrollo actual (Capítulo 8). El segundo bloque se inicia con una evaluación del origen y evolución del Mar Menor desde el punto de vista geológico, y evidencia su vulnerabilidad ante el deterioro que puede sufrir la desaparición de la barrera de cierre y/o su colmatación (Capítulo 9). En el Capítulo 10 se describe la relevancia que tiene la interacción de los acuíferos del Campo de Cartagena con la laguna, que se produce no sólo a nivel superficial sino también subterráneo. Esta interacción permite el acceso de nutrientes a la laguna, a pesar de la cierta capacidad de depuración de los humedales que le circundan, y también de metales traza por los aportes de residuos mineros (Capítulo 11). De hecho los metales traza están presentes en los sedimentos de la laguna, y su distribución se ha caracterizado en la columna sedimentaria relacionándola con la granulometría y el contenido de materia orgánica del sedimento (Capítulo 12). Posteriormente se describe la entrada de diversos contaminantes orgánicos, incluyendo pesticidas y fármacos a través de la rambla del Albujón, y su distribución estacional en agua y sedimento de la laguna (Capítulo 13). Este segundo bloque finaliza con el Capítulo 14 en el que se describe la bioacumulación de hidrocarburos aromáticos policíclicos, pesticidas y fármacos en moluscos y peces del Mar Menor, así como los efectos biológicos que la carga contaminante que accede a través de la rambla del Albujón produce en los organismos que allí habitan. El libro concluye con un breve epílogo redactado por los editores de este libro.Versión del edito

    Annual (2023) taxonomic update of RNA-directed RNA polymerase-encoding negative-sense RNA viruses (realm Riboviria: kingdom Orthornavirae: phylum Negarnaviricota)

    Get PDF
    55 Pág.In April 2023, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by one new family, 14 new genera, and 140 new species. Two genera and 538 species were renamed. One species was moved, and four were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.This work was supported in part through the Laulima Government Solutions, LLC, prime contract with the U.S. National Institute of Allergy and Infec tious Diseases (NIAID) under Contract No. HHSN272201800013C. J.H.K. performed this work as an employee of Tunnell Government Services (TGS), a subcontractor of Laulima Government Solutions, LLC, under Contract No. HHSN272201800013C. U.J.B. was supported by the Division of Intramural Resarch, NIAID. This work was also funded in part by Contract No. HSHQDC15-C-00064 awarded by DHS S and T for the management and operation of The National Biodefense Analysis and Countermeasures Centre, a federally funded research and development centre operated by the Battelle National Biodefense Institute (V.W.); and NIH contract HHSN272201000040I/HHSN27200004/D04 and grant R24AI120942 (N.V., R.B.T.). S.S. acknowl edges support from the Mississippi Agricultural and Forestry Experiment Station (MAFES), USDA-ARS project 58-6066-9-033 and the National Institute of Food and Agriculture, U.S. Department of Agriculture, Hatch Project, under Accession Number 1021494. The funders had no role in the design of the study; in the collection, analysis, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of the Army, the U.S. Department of Defence, the U.S. Department of Health and Human Services, including the Centres for Disease Control and Prevention, the U.S. Department of Homeland Security (DHS) Science and Technology Directorate (S and T), or of the institutions and companies affiliated with the authors. In no event shall any of these entities have any responsibility or liability for any use, misuse, inability to use, or reliance upon the information contained herein. The U.S. departments do not endorse any products or commercial services mentioned in this publication. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S.Government retains a non-exclusive, paid up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. Government purposes.Peer reviewe
    corecore