102 research outputs found

    Calcareous nannofossil assemblage changes across the Paleocene–Eocene Thermal Maximum: Evidence from a shelf setting

    Get PDF
    Biotic response of calcareous nannoplankton to abrupt warming across the Paleocene/Eocene boundary reflects a primary response to climatically induced parameters including increased continental runoff of freshwater, global acidification of seawater, high sedimentation rates, and calcareous nannoplankton assemblage turnover. We identify ecophenotypic nannofossil species adapted to low pH conditions (Discoaster anartios, D. araneus, Rhomboaster spp.), excursion taxa adapted to the extremely warm climatic conditions (Bomolithus supremus and Coccolithus bownii), three species of the genus Toweius (T. serotinus, T. callosus, T. occultatus) adapted to warm, rather than cool, water conditions, opportunists adapted to high productivity conditions (Coronocyclus bramlettei, Neochiastozygus junctus), and species adapted to oligotropic and/or cool‐water conditions that went into refugium during the PETM (Zygrablithus bijugatus, Calcidiscus? parvicrucis and Chiasmolithus bidens). Discoaster anartios was adapted to meso- to eutrophic, rather than oligotrophic, conditions. Comparison of these data to previous work on sediments deposited on shelf settings suggests that local conditions such as high precipitation rates and possible increase in major storms such as hurricanes resulted in increased continental runoff and high sedimentation rates that affected assemblage response to the PETM

    Assessing environmental change associated with early Eocene hyperthermals in the Atlantic Coastal Plain, USA

    Get PDF
    Eocene transient global warming events (hyperthermals) can provide insight into a future warmer world. While much research has focused on the Paleocene-Eocene Thermal Maximum (PETM), hyperthermals of a smaller magnitude can be used to characterize climatic responses over different magnitudes of forcing. This study identifies two events, namely the Eocene Thermal Maximum 2 (ETM2 and H2), in shallow marine sediments of the Eocene-aged Salisbury Embayment of Maryland, based on magnetostratigraphy, calcareous nannofossil, and dinocyst biostratigraphy, as well as the recognition of negative stable carbon isotope excursions (CIEs) in biogenic calcite. We assess local environmental change in the Salisbury Embayment, utilizing clay mineralogy, marine palynology, δ18O of biogenic calcite, and biomarker paleothermometry (TEX86). Paleotemperature proxies show broad agreement between surface water and bottom water temperature changes. However, the timing of the warming does not correspond to the CIE of the ETM2 as expected from other records, and the highest values are observed during H2, suggesting factors in addition to pCO2 forcing have influenced temperature changes in the region. The ETM2 interval exhibits a shift in clay mineralogy from smectite-dominated facies to illite-rich facies, suggesting hydroclimatic changes but with a rather dampened weathering response relative to that of the PETM in the same region. Organic walled dinoflagellate cyst assemblages show large fluctuations throughout the studied section, none of which seem systematically related to CIE warming. These observations are contrary to the typical tight correspondence between climate change and assemblages across the PETM, regionally and globally, and ETM2 in the Arctic Ocean. The data do indicate very warm and (seasonally) stratified conditions, likely salinity-driven, across H2. The absence of evidence for strong perturbations in local hydrology and nutrient supply during ETM2 and H2, compared to the PETM, is consistent with the less extreme forcing and the warmer pre-event baseline, as well as the non-linear response in hydroclimates to greenhouse forcing

    Paleogene Earth perturbations in the US Atlantic Coastal Plain (PEP-US): coring transects of hyperthermals to understand past carbon injections and ecosystem responses

    Get PDF
    The release of over 4500 Gt (gigatonnes) of carbon at the Paleocene–Eocene boundary provides the closest geological analog to modern anthropogenic CO2 emissions. The cause(s) of and responses to the resulting Paleocene–Eocene Thermal Maximum (PETM) and attendant carbon isotopic excursion (CIE) remain enigmatic and intriguing despite over 30 years of intense study. CIE records from the deep sea are generally thin due to its short duration and slow sedimentation rates, and they are truncated due to corrosive bottom waters dissolving carbonate sediments. In contrast, PETM coastal plain sections along the US mid-Atlantic margin are thick, generally having an expanded record of the CIE. Drilling here presents an opportunity to study the PETM onset to a level of detail that could transform our understanding of this important event. Previous drilling in this region provided important insights, but existing cores are either depleted or contain stratigraphic gaps. New core material is needed for well-resolved marine climate records. To plan new drilling, members of the international scientific community attended a multi-staged, hybrid scientific drilling workshop in 2022 designed to maximize not only scientifically and demographically diverse participation but also to protect participants' health and safety during the global pandemic and to reduce our carbon footprint. The resulting plan identified 10 sites for drill holes that would penetrate the Cretaceous–Paleogene (K–Pg) boundary, targeting the pre-onset excursion (POE), the CIE onset, the rapidly deposited Marlboro Clay that records a very thick CIE body, and other Eocene hyperthermals. The workshop participants developed several primary scientific objectives related to investigating the nature and the cause(s) of the CIE onset as well as the biotic effects of the PETM on the paleoshelf. Additional objectives focus on the evidence for widespread wildfires and changes in the hydrological cycle, shelf morphology, and sea level during the PETM as well as the desire to study both underlying K–Pg sediments and overlying post-Eocene records of extreme hyperthermal climate events. All objectives address our overarching research question: what was the Earth system response to a rapid carbon cycle perturbation?</p

    Paleogene Earth perturbations in the US Atlantic Coastal Plain (PEP-US): coring transects of hyperthermals to understand past carbon injections and ecosystem responses

    Get PDF
    The release of over 4500 Gt (gigatonnes) of carbon at the Paleocene–Eocene boundary provides the closest geological analog to modern anthropogenic CO2 emissions. The cause(s) of and responses to the resulting Paleocene–Eocene Thermal Maximum (PETM) and attendant carbon isotopic excursion (CIE) remain enigmatic and intriguing despite over 30 years of intense study. CIE records from the deep sea are generally thin due to its short duration and slow sedimentation rates, and they are truncated due to corrosive bottom waters dissolving carbonate sediments. In contrast, PETM coastal plain sections along the US mid-Atlantic margin are thick, generally having an expanded record of the CIE. Drilling here presents an opportunity to study the PETM onset to a level of detail that could transform our understanding of this important event. Previous drilling in this region provided important insights, but existing cores are either depleted or contain stratigraphic gaps. New core material is needed for well-resolved marine climate records. To plan new drilling, members of the international scientific community attended a multi-staged, hybrid scientific drilling workshop in 2022 designed to maximize not only scientifically and demographically diverse participation but also to protect participants’ health and safety during the global pandemic and to reduce our carbon footprint. The resulting plan identified 10 sites for drill holes that would penetrate the Cretaceous–Paleogene (K–Pg) boundary, targeting the pre-onset excursion (POE), the CIE onset, the rapidly deposited Marlboro Clay that records a very thick CIE body, and other Eocene hyperthermals. The workshop participants developed several primary scientific objectives related to investigating the nature and the cause(s) of the CIE onset as well as the biotic effects of the PETM on the paleoshelf. Additional objectives focus on the evidence for widespread wildfires and changes in the hydrological cycle, shelf morphology, and sea level during the PETM as well as the desire to study both underlying K–Pg sediments and overlying post-Eocene records of extreme hyperthermal climate events

    The biostratigraphy of the offshore Niger delta during the Late Quaternary: Complexities and progress of dating techniques

    Get PDF
    The Late Quaternary marine sediments from the Niger Delta lacks an age model using conventional radiocarbon dating due to the rarity of calcareous macrofossils. The proprietary nature of material drilled by companies prospecting for hydrocarbons in the Niger Delta basin, and in the rare cases when samples are available for study as well as freshwater dilution from continental runoff have contributed to this dearth of knowledge. The availability of three shallow marine (∼3 m) gravity cores obtained from the eastern, central, and western parts of the Niger Delta provides the opportunity for biostratigraphy utilising well-preserved marker species of planktonic foraminifera and calcareous nannofossils in the sediments. The last occurrence (LO) of planktonic foraminiferal species Globorotalia truncatulinoides (late Pleistocene) (MIS 2) and the first occurrence (FO) of Globorotalia tumida (Holocene) (MIS 1) are used to identify two interval zones in the gravity cores. The presence of the calcareous nannofossil Gephyrocapsa oceanica (all <3 μm in size) supports a late Pleistocene age (NN19 Zone) for the lower interval. In addition, an increase in the abundance of Emiliania huxleyi up-section is an indication of early Holocene age (NN20-NN21) for the upper interval

    Descent toward the icehouse: Eocene sea surface cooling inferred from GDGT distributions

    Get PDF
    The TEX86 proxy, based on the distribution of marine isoprenoidal glycerol dialkyl glycerol tetraether lipids (GDGTs), is increasingly used to reconstruct sea surface temperature (SST) during the Eocene epoch (56.0–33.9 Ma). Here we compile published TEX86 records, critically reevaluate them in light of new understandings in TEX86 palaeothermometry, and supplement them with new data in order to evaluate long-term temperature trends in the Eocene. We investigate the effect of archaea other than marine Thaumarchaeota upon TEX86 values using the branched-to-isoprenoid tetraether index (BIT), the abundance of GDGT-0 relative to crenarchaeol (%GDGT-0), and the Methane Index (MI). We also introduce a new ratio, % GDGTRS, which may help identify Red Sea-type GDGT distributions in the geological record. Using the offset between TEX86H and TEX86L(ΔH-L) and the ratio between GDGT-2 and GDGT-3 ([2]/[3]), we evaluate different TEX86 calibrations and present the first integrated SST compilation for the Eocene (55 to 34 Ma). Although the available data are still sparse some geographic trends can now be resolved. In the high latitudes (>55°), there was substantial cooling during the Eocene (~6°C). Our compiled record also indicates tropical cooling of ~2.5°C during the same interval. Using an ensemble of climate model simulations that span the Eocene, our results indicate that only a small percentage (~10%) of the reconstructed temperature change can be ascribed to ocean gateway reorganization or paleogeographic change. Collectively, this indicates that atmospheric carbon dioxide (pCO2) was the likely driver of surface water cooling during the descent toward the icehouse

    Calcareous Nannofossil Evidence for the Existence of the Gulf Stream during the Late Maastrichtian

    Get PDF
    Upper Maastrichtian calcareous nannofossil assemblages, from eight cores on the South Carolina Coastal Plain (onshore set) and three deep sea drilling sites from the continental slope and abyssal hills (offshore set), were analyzed by correlation and principal component analysis to examine the ancient surface water thermal structure. In addition, a temperature index derived from independently published paleobiogeographic information was applied to the sample data. All three methods indicate a strong separation of the samples into onshore and offshore sets, with the offshore data set exhibiting significantly warmer paleotemperatures. The great disparity between these two sample sets indicates that there was a strong thermal contrast between the onshore and offshore surface water masses that persisted throughout the late Maastrichtian despite evident short-term changes in fertility, productivity, and community structure. This suggests the Gulf Stream was present as a major oceanographic feature during the late Maastrichtian

    Upper Cretaceous calcareous nannoplankton paleoecology and its biostratigraphic consequences: Western central Atlantic Ocean

    No full text
    First and last occurrences of calcareous nannofossil taxa are generally thought to be synchronous across latitude and paleodepth, especially in temperate to tropical latitudes. This belief is particularly prevalent of regional studies, where stratigraphic sections examined for calcareous nannofossil content are derived from the same paleolatitude. However, even in these local studies, paleoceanographic and paleobiogeographic parameters can influence the fossil assemblage greatly, and models based on the assumption that first and last occurrences are synchronous may be incorrect. Two cores from the Blake Nose, Western Atlantic Ocean, and nine cores from the Atlantic Coastal Plain of South Carolina were examined for calcareous nannofossil content in an effort to better understand the role that paleoecology played in fossil distribution patterns. One new calcareous nannofossil genus and four new calcareous nannofossil species are described from Upper Cretaceous sediments. The first occurrence of Micula murus, a marker species for low- to mid-latitude sites, is shown to be diachronous across the study area and its usefulness as a biostratigraphic marker for neritic sediments is questioned. The evolutionary radiation and resulting biostratigraphic utility of species of Ceratolithoides, Lithraphidites and Micula is discussed in detail and their first and last occurrences are tied to the geochronologic timescale where possible. Differences in population abundance and species richness between deep ocean and nearshore areas are shown to have been controlled by paleoceanographic factors. The investigated Maastrichtian sections are representative of similar paleolatitudes and vary significantly only in their environment of deposition. This study illustrates the difficulties of creating age models based on floral first and last occurrences calibrated from different regions and the significant role that environment can play in determining calcareous nannofossil assemblages
    corecore