200 research outputs found
Nanoscale Mineralogy and Composition of Experimental Regolith Agglutinates Produced under Asteroidal Impact Conditions
On the Moon, the energetics of smaller impactors and the physical/chemical characteristics of the granular regolith target combine to form a key product of lunar space weathering: chemically reduced shock melts containing optically-active nanophase Fe metal grains (npFe0) [1]. In addition to forming the optically dark glassy matrix phase in lunar agglutinitic soil particles [1], these shock melts are becoming increasingly recognized for their contribution to optically active patina coatings on a wide range of exposed rock and grain surfaces in the lunar regolith [2]. In applying the lessons of lunar space weathering to asteroids, the potential similarities and differences in regolith-hosted shock melts on the Moon compared to those on asteroids has become a topic of increasing interest [3,4]. In a series of impact experiments performed at velocities applicable to the asteroid belt [5], Horz et al. [6] and See and Horz [7] have previously shown that repeated impacts into a gabbroic regolith analog target can produce melt-welded grain aggregates morphologically very similar to lunar agglutinates [6,7]. Although these agglutinate-like particles were extensively analyzed by electron microprobe and scanning electron microscopy (SEM) as part of the original study [7], a microstructural and compositional comparison of these aggregates to lunar soil agglutinates at sub-micron scales has yet to be made. To close this gap, we characterized a representative set of these aggregates using a JEOL 7600 field-emission scanning electron microscope (FE-SEM), and JEOL 2500SE field-emission scanning transmission electron microscope (FE-STEM) both optimized for energy dispersive X-ray spectroscopy (EDX) compositional spectrum imaging at respective analytical spatial resolutions of 0.5 to 1 micron, and 2 to 4 nm
Ground state cooling in a bad cavity
We study the mechanical effects of light on an atom trapped in a harmonic
potential when an atomic dipole transition is driven by a laser and it is
strongly coupled to a mode of an optical resonator. We investigate the cooling
dynamics in the bad cavity limit, focussing on the case in which the effective
transition linewidth is smaller than the trap frequency, hence when sideband
cooling could be implemented. We show that quantum correlations between the
mechanical actions of laser and cavity field can lead to an enhancement of the
cooling efficiency with respect to sideband cooling. Such interference effects
are found when the resonator losses prevail over spontaneous decay and over the
rates of the coherent processes characterizing the dynamics.Comment: 6 pages, 5 figures; J. Mod. Opt. (2007
Quantum Zeno Effect and Light-Dark Periods for a Single Atom
The quantum Zeno effect (QZE) predicts a slow-down of the time development of
a system under rapidly repeated ideal measurements, and experimentally this was
tested for an ensemble of atoms using short laser pulses for non-selective
state measurements. Here we consider such pulses for selective measurements on
a single system. Each probe pulse will cause a burst of fluorescence or no
fluorescence. If the probe pulses were strictly ideal measurements, the QZE
would predict periods of fluorescence bursts alternating with periods of no
fluorescence (light and dark periods) which would become longer and longer with
increasing frequency of the measurements. The non-ideal character of the
measurements is taken into account by incorporating the laser pulses in the
interaction, and this is used to determine the corrections to the ideal case.
In the limit, when the time between the laser pulses goes to zero, no freezing
occurs but instead we show convergence to the familiar macroscopic light and
dark periods of the continuously driven Dehmelt system. An experiment of this
type should be feasible for a single atom or ion in a trapComment: 16 pages, LaTeX, a4.sty; to appear in J. Phys.
Is it the boundaries or disorder that dominates electron transport in semiconductor `billiards'?
Semiconductor billiards are often considered as ideal systems for studying
dynamical chaos in the quantum mechanical limit. In the traditional picture,
once the electron's mean free path, as determined by the mobility, becomes
larger than the device, disorder is negligible and electron trajectories are
shaped by specular reflection from the billiard walls alone. Experimental
insight into the electron dynamics is normally obtained by magnetoconductance
measurements. A number of recent experimental studies have shown these
measurements to be largely independent of the billiards exact shape, and highly
dependent on sample-to-sample variations in disorder. In this paper, we discuss
these more recent findings within the full historical context of work on
semiconductor billiards, and offer strong evidence that small-angle scattering
at the sub-100 nm length-scale dominates transport in these devices, with
important implications for the role these devices can play for experimental
tests of ideas in quantum chaos.Comment: Submitted to Fortschritte der Physik for special issue on Quantum
Physics with Non-Hermitian Operator
Phase Separation of Rigid-Rod Suspensions in Shear Flow
We analyze the behavior of a suspension of rigid rod-like particles in shear
flow using a modified version of the Doi model, and construct diagrams for
phase coexistence under conditions of constant imposed stress and constant
imposed strain rate, among paranematic, flow-aligning nematic, and log-rolling
nematic states. We calculate the effective constitutive relations that would be
measured through the regime of phase separation into shear bands. We calculate
phase coexistence by examining the stability of interfacial steady states and
find a wide range of possible ``phase'' behaviors.Comment: 23 pages 19 figures, revised version to be published in Physical
Review
Mineralogy and petrology of comet 81P/wild 2 nucleus samples
The bulk of the comet 81P/Wild 2 (hereafter Wild 2) samples returned to Earth by the Stardust spacecraft appear to be weakly constructed mixtures of nanometer-scale grains, with occasional much larger (over 1 micrometer) ferromagnesian silicates, Fe-Ni sulfides, Fe-Ni metal, and accessory phases. The very wide range of olivine and low-Ca pyroxene compositions in comet Wild 2 requires a wide range of formation conditions, probably reflecting very different formation locations in the protoplanetary disk. The restricted compositional ranges of Fe-Ni sulfides, the wide range for silicates, and the absence of hydrous phases indicate that comet Wild 2 experienced little or no aqueous alteration. Less abundant Wild 2 materials include a refractory particle, whose presence appears to require radial transport in the early protoplanetary disk
- …