126 research outputs found

    Underwater radiated noise levels of a research icebreaker in the central Arctic Ocean

    Get PDF
    U.S. Coast Guard Cutter Healy\u27s underwater radiated noise signature was characterized in the central Arctic Ocean during different types of ice-breaking operations. Propulsion modes included transit in variable ice cover, breaking heavy ice with backing-and-ramming maneuvers, and dynamic positioning with the bow thruster in operation. Compared to open-water transit, Healy\u27s noise signature increased approximately 10 dB between 20 Hz and 2 kHz when breaking ice. The highest noise levels resulted while the ship was engaged in backing-and-ramming maneuvers, owing to cavitation when operating the propellers astern or in opposing directions. In frequency bands centered near 10, 50, and 100 Hz, source levels reached 190–200 dB re: 1 μPa at 1 m (full octave band) during ice-breaking operations

    Acoustic behavior of melon-headed whales varies on a diel cycle.

    Get PDF
    Many terrestrial and marine species have a diel activity pattern, and their acoustic signaling follows their current behavioral state. Whistles and echolocation clicks on long-term recordings produced by melon-headed whales (Peponocephala electra) at Palmyra Atoll indicated that these signals were used selectively during different phases of the day, strengthening the idea of nighttime foraging and daytime resting with afternoon socializing for this species. Spectral features of their echolocation clicks changed from day to night, shifting the median center frequency up. Additionally, click received levels increased with increasing ambient noise during both day and night. Ambient noise over a wide frequency band was on average higher at night. The diel adjustment of click features might be a reaction to acoustic masking caused by these nighttime sounds. Similar adaptations have been documented for numerous taxa in response to noise. Or it could be, unrelated, an increase in biosonar source levels and with it a shift in center frequency to enhance detection distances during foraging at night. Call modifications in intensity, directionality, frequency, and duration according to echolocation task are well established for bats. This finding indicates that melon-headed whales have flexibility in their acoustic behavior, and they collectively and repeatedly adapt their signals from day- to nighttime circumstances

    Spatio-temporal patterns of beaked whale echolocation signals in the North Pacific.

    Get PDF
    At least ten species of beaked whales inhabit the North Pacific, but little is known about their abundance, ecology, and behavior, as they are elusive and difficult to distinguish visually at sea. Six of these species produce known species-specific frequency modulated (FM) echolocation pulses: Baird's, Blainville's, Cuvier's, Deraniyagala's, Longman's, and Stejneger's beaked whales. Additionally, one described FM pulse (BWC) from Cross Seamount, Hawai'i, and three unknown FM pulse types (BW40, BW43, BW70) have been identified from almost 11 cumulative years of autonomous recordings at 24 sites throughout the North Pacific. Most sites had a dominant FM pulse type with other types being either absent or limited. There was not a strong seasonal influence on the occurrence of these signals at any site, but longer time series may reveal smaller, consistent fluctuations. Only the species producing BWC signals, detected throughout the Pacific Islands region, consistently showed a diel cycle with nocturnal foraging. By comparing stranding and sighting information with acoustic findings, we hypothesize that BWC signals are produced by ginkgo-toothed beaked whales. BW43 signal encounters were restricted to Southern California and may be produced by Perrin's beaked whale, known only from Californian waters. BW70 signals were detected in the southern Gulf of California, which is prime habitat for Pygmy beaked whales. Hubb's beaked whale may have produced the BW40 signals encountered off central and southern California; however, these signals were also recorded off Pearl and Hermes Reef and Wake Atoll, which are well south of their known range

    Blue Whales Respond to Anthropogenic Noise

    Get PDF
    Anthropogenic noise may significantly impact exposed marine mammals. This work studied the vocalization response of endangered blue whales to anthropogenic noise sources in the mid-frequency range using passive acoustic monitoring in the Southern California Bight. Blue whales were less likely to produce calls when mid-frequency active sonar was present. This reduction was more pronounced when the sonar source was closer to the animal, at higher sound levels. The animals were equally likely to stop calling at any time of day, showing no diel pattern in their sensitivity to sonar. Conversely, the likelihood of whales emitting calls increased when ship sounds were nearby. Whales did not show a differential response to ship noise as a function of the time of the day either. These results demonstrate that anthropogenic noise, even at frequencies well above the blue whales' sound production range, has a strong probability of eliciting changes in vocal behavior. The long-term implications of disruption in call production to blue whale foraging and other behaviors are currently not well understood

    Ringed, Bearded, and Ribbon Seal Vocalizations North of Barrow, Alaska: Seasonal Presence and Relationship with Sea Ice

    Get PDF
    The acoustic repertoires of ringed, bearded, and ribbon seals are described, along with their seasonal occurrence and relationship to sea ice concentration. Acoustic recordings were made between September and June over three years (2006 – 09) along the continental slope break in the Chukchi Sea, 120 km north-northwest of Barrow, Alaska. Vocalizations of ringed and bearded seals occurred in winter and during periods of 80% – 100% ice cover but were mostly absent during open water periods. The presence of ringed and bearded seal calls throughout winter and spring suggests that some portion of their population is overwintering. Analysis of the repertoire of ringed and bearded seal calls shows seasonal variation. Ringed seal calls are primarily barks in winter and yelps in spring, while bearded seal moans increase during spring. Ribbon seal calls were detected only in the fall of 2008 during the open water period. The repertoire of known ribbon seal vocalizations was expanded to include three additional calls, and two stereotyped call sequences were common. Retrospective analyses of ringed seal recordings from 1982 and ribbon seal recordings from 1967 showed a high degree of stability in call repertoire across large spatial and temporal scales.Le répertoire acoustique des phoques annelés, des phoques barbus et des phoques à bandes sont décrits, de même que leur présence saisonnière et leur rapport avec la concentration de glace de mer. Des enregistrements acoustiques ont été effectués entre septembre et juin sur une période de trois ans (2006 – 2009), le long de la rupture de la pente continentale, dans la mer des Tchouktches, à 120 km au nord-nord-ouest de Barrow, en Alaska. Les vocalisations de phoques annelés et de phoques barbus étaient présentes pendant l’hiver et pendant les périodes où la concentration de glace était de 80 % à 100 %, mais elles se faisaient rares pendant les périodes d’eau libre. La présence des cris de phoques annelés et de phoques barbus tout au long de l’hiver et du printemps suggère qu’une partie de leur population hiverne. L’analyse du répertoire de cris de phoques annelés et de phoques barbus indique une variation saisonnière. L’hiver, le cri du phoque annelé prend principalement la forme d’aboiements, tandis que le printemps, il prend la forme de glapissements. Les gémissements du phoque barbu s’intensifient au printemps. Le cri des phoques à bandes n’a été capté qu’à l’automne 2008, pendant la période des eaux libres. Le répertoire des vocalisations connues du phoque à bandes a été élargi pour inclure trois autres cris, bien que deux séquences de cris stéréotypées étaient courantes. L’analyse rétrospective des enregistrements de cris de phoques annelés de 1982 et de phoques à bandes de 1967 a laissé entrevoir une grande stabilité du point de vue du répertoire des cris, et ce, sur de vastes échelles spatiales et temporelles

    Citizen science can improve conservation science, natural resource management, and environmental protection

    Get PDF
    Citizen science has advanced science for hundreds of years, contributed to many peer-reviewed articles, and informed land management decisions and policies across the United States. Over the last 10 years, citizen science has grown immensely in the United States and many other countries. Here, we show how citizen science is a powerful tool for tackling many of the challenges faced in the field of conservation biology. We describe the two interwoven paths bywhich citizen science can improve conservation efforts, natural resource management, and environmental protection. The first path includes building scientific knowledge, while the other path involves informing policy and encouraging public action. We explore how citizen science is currently used and describe the investments needed to create a citizen science program. We find that: 1. Citizen science already contributes substantially to many domains of science, including conservation, natural resource, and environmental science. Citizen science informs natural resource management, environmental protection, and policymaking and fosters public input and engagement. 2. Many types of projects can benefit fromcitizen science, but one must be careful tomatch the needs for science and public involvement with the right type of citizen science project and the right method of public participation. 3. Citizen science is a rigorous process of scientific discovery, indistinguishable from conventional science apart from the participation of volunteers.When properly designed, carried out, and evaluated, citizen science can provide sound science, efficiently generate high-quality data, and help solve problems

    Student engagement as a function of environmental complexity in high school classrooms

    Get PDF
    The purpose of this study was to investigate the linkage between the quality of the learning environment and the quality of students' experience in seven high school classrooms in six different subject areas. The quality of the learning environment was conceptualized in terms of environmental complexity, or the simultaneous presence of environmental challenge and environmental support. The students (N = 108) in each class participated in the Experience Sampling Method (ESM) measuring their engagement and related experiential variables. Concurrently, environmental complexity and its subdimensions were observed and rated from video with a new observational instrument, The Optimal Learning Environments - Observational Log and Assessment (OLE-OLA). Using two-level HLM regression models, ratings from the OLE-OLA were utilized to predict student engagement and experiential variables as measured by the ESM. Results showed that environmental complexity predicted student engagement and sense of classroom self-esteem. Implications for research, theory and practice are discussed

    Climate Change and the Future of California's Endemic Flora

    Get PDF
    The flora of California, a global biodiversity hotspot, includes 2387 endemic plant taxa. With anticipated climate change, we project that up to 66% will experience >80% reductions in range size within a century. These results are comparable with other studies of fewer species or just samples of a region's endemics. Projected reductions depend on the magnitude of future emissions and on the ability of species to disperse from their current locations. California's varied terrain could cause species to move in very different directions, breaking up present-day floras. However, our projections also identify regions where species undergoing severe range reductions may persist. Protecting these potential future refugia and facilitating species dispersal will be essential to maintain biodiversity in the face of climate change

    Many Labs 5:Testing pre-data collection peer review as an intervention to increase replicability

    Get PDF
    Replication studies in psychological science sometimes fail to reproduce prior findings. If these studies use methods that are unfaithful to the original study or ineffective in eliciting the phenomenon of interest, then a failure to replicate may be a failure of the protocol rather than a challenge to the original finding. Formal pre-data-collection peer review by experts may address shortcomings and increase replicability rates. We selected 10 replication studies from the Reproducibility Project: Psychology (RP:P; Open Science Collaboration, 2015) for which the original authors had expressed concerns about the replication designs before data collection; only one of these studies had yielded a statistically significant effect (p < .05). Commenters suggested that lack of adherence to expert review and low-powered tests were the reasons that most of these RP:P studies failed to replicate the original effects. We revised the replication protocols and received formal peer review prior to conducting new replication studies. We administered the RP:P and revised protocols in multiple laboratories (median number of laboratories per original study = 6.5, range = 3?9; median total sample = 1,279.5, range = 276?3,512) for high-powered tests of each original finding with both protocols. Overall, following the preregistered analysis plan, we found that the revised protocols produced effect sizes similar to those of the RP:P protocols (?r = .002 or .014, depending on analytic approach). The median effect size for the revised protocols (r = .05) was similar to that of the RP:P protocols (r = .04) and the original RP:P replications (r = .11), and smaller than that of the original studies (r = .37). Analysis of the cumulative evidence across the original studies and the corresponding three replication attempts provided very precise estimates of the 10 tested effects and indicated that their effect sizes (median r = .07, range = .00?.15) were 78% smaller, on average, than the original effect sizes (median r = .37, range = .19?.50)

    Multiple Loci Are Associated with White Blood Cell Phenotypes

    Get PDF
    White blood cell (WBC) count is a common clinical measure from complete blood count assays, and it varies widely among healthy individuals. Total WBC count and its constituent subtypes have been shown to be moderately heritable, with the heritability estimates varying across cell types. We studied 19,509 subjects from seven cohorts in a discovery analysis, and 11,823 subjects from ten cohorts for replication analyses, to determine genetic factors influencing variability within the normal hematological range for total WBC count and five WBC subtype measures. Cohort specific data was supplied by the CHARGE, HeamGen, and INGI consortia, as well as independent collaborative studies. We identified and replicated ten associations with total WBC count and five WBC subtypes at seven different genomic loci (total WBC count—6p21 in the HLA region, 17q21 near ORMDL3, and CSF3; neutrophil count—17q21; basophil count- 3p21 near RPN1 and C3orf27; lymphocyte count—6p21, 19p13 at EPS15L1; monocyte count—2q31 at ITGA4, 3q21, 8q24 an intergenic region, 9q31 near EDG2), including three previously reported associations and seven novel associations. To investigate functional relationships among variants contributing to variability in the six WBC traits, we utilized gene expression- and pathways-based analyses. We implemented gene-clustering algorithms to evaluate functional connectivity among implicated loci and showed functional relationships across cell types. Gene expression data from whole blood was utilized to show that significant biological consequences can be extracted from our genome-wide analyses, with effect estimates for significant loci from the meta-analyses being highly corellated with the proximal gene expression. In addition, collaborative efforts between the groups contributing to this study and related studies conducted by the COGENT and RIKEN groups allowed for the examination of effect homogeneity for genome-wide significant associations across populations of diverse ancestral backgrounds
    • …
    corecore