133 research outputs found

    Bone Structure and Strength in Competitive Gymnasts

    Get PDF
    Introduction: Participation in high impact sports during growth has shown toincrease bone quality1. Gymnastics is one the of the highest impact sports involvingimpacts of up to 10 times body weight2. Gymnasts have previously displayed increasedbone mass and strength; however, it is not yet understood how bone structure isaffected by gymnastics participation. The purpose of this study was to investigate theroll of gymnastics participation on bone structure and bone strength.Methods: The study recruited 17 highly competitive female gymnasts and 15recreationally active controls (16 to 30 years). Areal bone mineral density (aBMD) andbody composition of the hip, spine, and whole body were determined by dual energyx-ray absorptiometry (DXA, Discovery A, Hologic). Bone structure properties weredetermined for the non-dominant tibia and radius using high resolution peripheralquantitative computed tomography (HR-pQCT, Scanco Medical, Brutisellen, Switzerland).Finite element analysis (FEA) was used to determine an in vivo estimation ofbone strength. All data are presented as means standard deviation. Differencesbetween groups were identified with analysis of covariance, adjusting for differencesin body size.Results: Gymnasts had a higher whole body aBMD of 1.0700.122 g/cm2 comparedto controls, 0.9440.123 g/cm2 (p<0.01). Gymnasts also had a larger cross-sectionalarea of their radius, 30539 mm2 versus 24740 mm2 (p<0.01), and tibia, 68365 mm2versus 62666 mm2, than controls. Therefore, FEA revealed gymnasts had strongerbones reflected by a higher failure load, 2830500 N versus 1915503 N (p<0.01) inthe radius, and 7300845 N versus 5810852 N (p<0.01) in the tibia, compared withcontrols.Conclusion: Gymnasts exhibited enhanced bone structure and strength whencompared to inactive controls. The high loading associated with the sport is likely toinduce these desired bone properties

    A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions

    Get PDF
    Conservation agriculture involves reduced tillage, permanent soil cover and crop rotations to enhance soil fertility and to supply food from a dwindling land resource. Recently, conservation agriculture has been promoted in Southern Africa, mainly for maize-based farming systems. However, maize yields under rain-fed conditions are often variable. There is therefore a need to identify factors that influence crop yield under conservation agriculture and rain-fed conditions. Here, we studied maize grain yield data from experiments lasting 5 years and more under rain-fed conditions. We assessed the effect of long-term tillage and residue retention on maize grain yield under contrasting soil textures, nitrogen input and climate. Yield variability was measured by stability analysis. Our results show an increase in maize yield over time with conservation agriculture practices that include rotation and high input use in low rainfall areas. But we observed no difference in system stability under those conditions. We observed a strong relationship between maize grain yield and annual rainfall. Our meta-analysis gave the following findings: (1) 92% of the data show that mulch cover in high rainfall areas leads to lower yields due to waterlogging; (2) 85% of data show that soil texture is important in the temporal development of conservation agriculture effects, improved yields are likely on well-drained soils; (3) 73% of the data show that conservation agriculture practices require high inputs especially N for improved yield; (4) 63% of data show that increased yields are obtained with rotation but calculations often do not include the variations in rainfall within and between seasons; (5) 56% of the data show that reduced tillage with no mulch cover leads to lower yields in semi-arid areas; and (6) when adequate fertiliser is available, rainfall is the most important determinant of yield in southern Africa. It is clear from our results that conservation agriculture needs to be targeted and adapted to specific biophysical conditions for improved impact

    Indacenodibenzothiophenes: Synthesis, Optoelectronic Properties and Materials Applications of Molecules with Strong Antiaromatic Character

    Get PDF
    Indeno[1,2-b]fluorenes (IFs), while containing 4n π-electrons, are best described as two aromatic benzene rings fused to a weakly paratropic s-indacene core. In this study, we find that replacement of the outer benzene rings of an IF with benzothiophenes allows the antiaromaticity of the central s-indacene to strongly reassert itself. Herein we report a combined synthetic, computational, structural, and materials study of anti- and syn-indacenodibenzothiophenes (IDBTs). We have developed an efficient and scalable synthesis for preparation of a series of aryl- and ethynyl-substituted IDBTs. NICS-XY scans and ACID calculations reveal an increasingly antiaromatic core from [1,2-b]IF to anti-IDBT, with syn-IDBT being nearly as antiaromatic as the parent s-indacene. As an initial evaluation, the intermolecular electronic couplings and electronic band structure of a diethynyl anti-IDBT derivative reveal the potential for hole and/or electron transport. OFETs constructed using this molecule show the highest hole mobilities yet achieved for a fully conjugated IF derivative

    Kinematics of Ten Early-Type Galaxies from HST and Ground-Based Spectroscopy

    Full text link
    We present stellar kinematics for a sample of 10 early-type galaxies observed using the STIS aboard the Hubble Space Telescope, and the Modular Spectrograph on the MDM Observatory 2.4-m telescope. The spectra are used to derive line-of-sight velocity distributions (LOSVDs) of the stars using a Maximum Penalized Likelihood method. We use Gauss-Hermite polynomials to parameterize the LOSVDs and find predominantly negative h4 values (boxy distributions) in the central regions of our galaxies. One galaxy, NGC 4697, has significantly positive central h4 (high tail weight). The majority of galaxies have a central velocity dispersion excess in the STIS kinematics over ground-based velocity dispersions. The galaxies with the strongest rotational support, as quantified with v_MAX/sigma_STIS, have the smallest dispersion excess at STIS resolution. The best-fitting, general, axisymmetric dynamical models (described in a companion paper) require black holes in all cases, with masses ranging from 10^6.5 to 10^9.3 Msun. We replot these updated masses on the BH/sigma relation, and show that the fit to only these 10 galaxies has a slope consistent with the fits to larger samples. The greatest outlier is NGC 2778, a dwarf elliptical with relatively poorly constrained black hole mass. The two best candidates for pseudobulges, NGC 3384 and 7457, do not deviate significantly from the established relation between black hole and sigma. Neither do the three galaxies which show the most evidence of a recent merger, NGC 3608, 4473, and 4697.Comment: 43 pages, accepted for publication in the Astrophysical Journal, high resolution version found at http://hoku.as.utexas.edu/~gebhardt/pinkney.p

    Distributed Drug Discovery, Part 2: Global Rehearsal of Alkylating Agents for the Synthesis of Resin-Bound Unnatural Amino Acids and Virtual D3 Catalog Construction

    Get PDF

    Positional Cloning of “Lisch-like”, a Candidate Modifier of Susceptibility to Type 2 Diabetes in Mice

    Get PDF
    In 404 Lepob/ob F2 progeny of a C57BL/6J (B6) x DBA/2J (DBA) intercross, we mapped a DBA-related quantitative trait locus (QTL) to distal Chr1 at 169.6 Mb, centered about D1Mit110, for diabetes-related phenotypes that included blood glucose, HbA1c, and pancreatic islet histology. The interval was refined to 1.8 Mb in a series of B6.DBA congenic/subcongenic lines also segregating for Lepob. The phenotypes of B6.DBA congenic mice include reduced β-cell replication rates accompanied by reduced β-cell mass, reduced insulin/glucose ratio in blood, reduced glucose tolerance, and persistent mild hypoinsulinemic hyperglycemia. Nucleotide sequence and expression analysis of 14 genes in this interval identified a predicted gene that we have designated “Lisch-like” (Ll) as the most likely candidate. The gene spans 62.7 kb on Chr1qH2.3, encoding a 10-exon, 646–amino acid polypeptide, homologous to Lsr on Chr7qB1 and to Ildr1 on Chr16qB3. The largest isoform of Ll is predicted to be a transmembrane molecule with an immunoglobulin-like extracellular domain and a serine/threonine-rich intracellular domain that contains a 14-3-3 binding domain. Morpholino knockdown of the zebrafish paralog of Ll resulted in a generalized delay in endodermal development in the gut region and dispersion of insulin-positive cells. Mice segregating for an ENU-induced null allele of Ll have phenotypes comparable to the B.D congenic lines. The human ortholog, C1orf32, is in the middle of a 30-Mb region of Chr1q23-25 that has been repeatedly associated with type 2 diabetes
    corecore