1,024 research outputs found

    The Impact of the Flat World on Player Transfers in Major League Baseball

    Get PDF

    Daily rhythm of cerebral blood flow velocity

    Get PDF
    BACKGROUND: CBFV (cerebral blood flow velocity) is lower in the morning than in the afternoon and evening. Two hypotheses have been proposed to explain the time of day changes in CBFV: 1) CBFV changes are due to sleep-associated processes or 2) time of day changes in CBFV are due to an endogenous circadian rhythm independent of sleep. The aim of this study was to examine CBFV over 30 hours of sustained wakefulness to determine whether CBFV exhibits fluctuations associated with time of day. METHODS: Eleven subjects underwent a modified constant routine protocol. CBFV from the middle cerebral artery was monitored by chronic recording of Transcranial Doppler (TCD) ultrasonography. Other variables included core body temperature (CBT), end-tidal carbon dioxide (EtCO2), blood pressure, and heart rate. Salivary dim light melatonin onset (DLMO) served as a measure of endogenous circadian phase position. RESULTS: A non-linear multiple regression, cosine fit analysis revealed that both the CBT and CBFV rhythm fit a 24 hour rhythm (R(2 )= 0.62 and R(2 )= 0.68, respectively). Circadian phase position of CBT occurred at 6:05 am while CBFV occurred at 12:02 pm, revealing a six hour, or 90 degree difference between these two rhythms (t = 4.9, df = 10, p < 0.01). Once aligned, the rhythm of CBFV closely tracked the rhythm of CBT as demonstrated by the substantial correlation between these two measures (r = 0.77, p < 0.01). CONCLUSION: In conclusion, time of day variations in CBFV have an approximately 24 hour rhythm under constant conditions, suggesting regulation by a circadian oscillator. The 90 degree-phase angle difference between the CBT and CBFV rhythms may help explain previous findings of lower CBFV values in the morning. The phase difference occurs at a time period during which cognitive performance decrements have been observed and when both cardiovascular and cerebrovascular events occur more frequently. The mechanisms underlying this phase angle difference require further exploration

    SDSS-HET Survey of Kepler Eclipsing Binaries. Description of the Survey and First Results

    Get PDF
    The Kepler mission has provided a treasure trove of eclipsing binaries (EBs), observed at extremely high photometric precision, nearly continuously for several years. We are carrying out a survey of ~100 of these EBs to derive dynamical masses and radii with precisions of 3% or better. We use multiplexed near-infrared H-band spectroscopy from the Sloan Digital Sky Survey-III and -IV APOGEE instrument and optical spectroscopy from the Hobby–Eberly Telescope High-resolution Spectrograph to derive double-lined spectroscopic orbits and dynamical mass ratios (q) for the EB sample, two of which we showcase in this paper. This orbital information is combined with Kepler photometry to derive orbital inclination, dynamical masses of the system components, radii, and temperatures. These measurements are directly applicable for benchmarking stellar models that are integrating the next generation of improvements, such as the magnetic suppression of convection efficiency, updated opacity tables, and fine-tuned equations of state. We selected our EB sample to include systems with low-mass (M ≟ 0.8 M⊙) primary or secondary components, as well as many EBs expected to populate the relatively sparse parameter space below ~0.5 M⊙. In this paper, we describe our EB sample and the analytical techniques we are utilizing, and also present masses and radii for two systems that inhabit particularly underpopulated regions of mass–radius–period space: KIC 2445134 and KIC 3003991. Our joint spectroscopic and photometric analysis of KIC 2445134 (q = 0.411 ± 0.001) yields masses and radii of M_A = 1.29 ± 0.03 M⊙, M_B = 0.53 ± 0.01 M⊙, R_A = 1.42 ± 0.01 R⊙, R_B = 0.510 ± 0.004 R⊙, and a temperature ratio of T_B/T_A = 0.635 ± 0.001; our analysis of KIC 3003991 (q = 0.298 ± 0.006) yields M_A = 0.74 ± 0.04 M⊙, M_B = 0.222 ± 0.007 M⊙, R_A = 0.84 ± 0.01 R⊙, R_B = 0.250 ± 0.004 R⊙, and a temperature ratio of T_B/T_A = 0.662 ± 0.001

    HeII Reionization and its Effect on the IGM

    Full text link
    Observations of the intergalactic medium (IGM) suggest that quasars reionize HeII in the IGM at z ~ 3. We have run a set of 190 and 430 comoving Mpc simulations of HeII being reionized by quasars to develop an understanding of the nature of HeII reionization and its potential impact on observables. We find that HeII reionization heats regions in the IGM by as much as 25,000 K above the temperature that is expected otherwise, with the volume-averaged temperature increasing by ~ 12,000 K and with large temperature fluctuations on ~ 50 Mpc scales. Much of the heating occurs far from QSOs by hard photons. We find a temperature-density equation of state of gamma -1 ~ 0.3 during HeII reionization, but with a wide dispersion in this relation having sigma ~ 10^4 K. HeII reionization by the observed population of quasars cannot produce an inverted relation (gamma - 1 < 0). Our simulations are consistent with the observed evolution in the mean transmission of the HeII Ly-alpha forest. We argue that the heat input due to HeII reionization is unable to cause the observed depression at z = 3.2 in the HI Ly-alpha forest opacity as has been suggested. We investigate how uncertainties in the properties of QSOs and of HeII Lyman-limit systems influence our predictions.Comment: 19 pages, 15 figures, plus 9 pages of Appendix. accepted by Ap

    NGC 5846-UDG1: A Galaxy Formed Mostly by Star Formation in Massive, Extremely Dense Clumps of Gas

    Get PDF
    It has been shown that ultra-diffuse galaxies (UDGs) have higher specific frequencies of globular clusters, on average, than other dwarf galaxies with similar luminosities. The UDG NGC 5846-UDG1 is among the most extreme examples of globular cluster-rich galaxies found so far. Here we present new Hubble Space Telescope observations and analysis of this galaxy and its globular cluster system. We find that NGC 5846-UDG1 hosts 54 ± 9 globular clusters, three to four times more than any previously known galaxy with a similar luminosity and higher than reported in previous studies. With a galaxy luminosity of L V,gal ≈ 6 × 107 L ⊙ (M ⋆ ≈ 1.2 × 108 M ⊙) and a total globular cluster luminosity of L V,GCs ≈ 7.6 × 106 L ⊙, we find that the clusters currently comprise ∌13% of the total light. Taking into account the effects of mass loss from clusters during their formation and throughout their lifetime, we infer that most of the stars in the galaxy likely formed in globular clusters, and very little to no normal low-density star formation occurred. This result implies that the most extreme conditions during early galaxy formation promoted star formation in massive and dense clumps, in contrast to the dispersed star formation observed in galaxies today

    Diffuse Lyman Alpha Emitting Halos: A Generic Property of High Redshift Star Forming Galaxies

    Get PDF
    Using a sample of 92 UV continuum-selected, spectroscopically identified galaxies with = 2.65, all of which have been imaged in the Ly-a line with extremely deep narrow-band imaging, we examine galaxy Ly-a emission profiles to very faint surface brightness limits. The galaxies are representative of spectroscopic samples of LBGs at similar redshifts in terms of apparent magnitude, UV luminosity, inferred extinction, and star formation rate, and were selected without regard to Ly-a emission properties. We use extremely deep stacks of UV continuum and Ly-a emission line images to show that all sub-samples exhibit diffuse Ly-a emission to radii of at least 10" (80 physical kpc), including galaxies whose spectra exhibit Ly-a in net absorption. The intensity scaling, but not the surface brightness distribution, is strongly correlated with the emission observed in the central ~1". The characteristic scale length for Ly-a line emission exceeds that of the UV continuum light for the same galaxies by factors of at least 5-10, regardless of the spectral morphology of Ly-a. Including the extended Ly-a halos increases the total Ly-a flux [and rest equivalent width W_0(Lya)] by an average factor of 5. We argue that most, if not all, of the observed Ly-a emission in the diffuse halos originates in the galaxy H II regions and is scattered in our direction by H I gas in the galaxy's circum-galactic medium (CGM). We show that whether or not a galaxy is classified as a giant "Lyman-a Blob" (LAB) depends sensitively on the Ly-a surface brightness threshold reached by an observation. Accounting for diffuse Ly-a halos, all LBGs would be LABs if surveys were routinely sensitive to 10 times lower surface brightness thresholds; also, essentially all LBGs would qualify as LAEs (W_0(Lya) > 20 A).Comment: Updated to match final version to appear in ApJ; 20 pages, 14 figure

    Planning for Sustainability in Small Municipalities: The Influence of Interest Groups, Growth Patterns, and Institutional Characteristics

    Get PDF
    How and why small municipalities promote sustainability through planning efforts is poorly understood. We analyzed ordinances in 451 Maine municipalities and tested theories of policy adoption using regression analysis.We found that smaller communities do adopt programs that contribute to sustainability relevant to their scale and context. In line with the political market theory, we found that municipalities with strong environmental interests, higher growth, and more formal governments were more likely to adopt these policies. Consideration of context and capacity in planning for sustainability will help planners better identify and benefit from collaboration, training, and outreach opportunities

    Semi-numeric simulations of helium reionization and the fluctuating radiation background

    Get PDF
    Recent He II Lyman-alpha forest observations from 2.0 2.7. These results point to a fluctuating He-ionizing background, which may be due to the end of helium reionization of this era. We present a fast, semi-numeric procedure to approximate detailed cosmological simulations. We compute the distribution of dark matter halos, ionization state of helium, and density field at z = 3 in broad agreement with recent simulations. Given our speed and flexibility, we investigate a range of ionizing source and active quasar prescriptions. Spanning a large area of parameter space, we find order-of-magnitude fluctuations in the He II ionization rate in the post-reionization regime. During reionization, the fluctuations are even stronger and develop a bimodal distribution, in contrast to semi-analytic models and the hydrogen equivalent. These distributions indicate a low-level ionizing background even at significant He II fractions
    • 

    corecore