299 research outputs found

    The clustering of radio galaxies at z~0.55 from the 2SLAQ LRG survey

    Get PDF
    We examine the clustering properties of low-power radio galaxies at redshift 0.4<z<0.8, using data from the 2SLAQ Luminous Red Galaxy (LRG) survey. We find that radio-detected LRGs (with optical luminosities of 3-5L* and 1.4GHz radio powers between 1e24 and 1e26 W/Hz) are significantly more clustered than a matched sample of radio-quiet LRGs with the same distribution in optical luminosity and colour. The measured scale length of the 2pt auto-correlation function, r0, is 12.3+/-1.2 1/h Mpc and 9.02+/-0.52 1/h Mpc for the radio-detected and radio-quiet samples respectively. Using the halo model framework we demonstrate that the radio-loud LRGs have typical halo masses of 10.1+/-1.4 x10^13 1/h M_sun compared to 6.44+/-0.32 x10^13 1/h M_sun for the radio-quiet sample. A model in which the radio-detected LRGs are almost all central galaxies within haloes provides the best fit, and we estimate that at least 30% of LRGs with the same clustering amplitude as the radio-detected LRGs are currently radio-loud. Our results imply that radio-loud LRGs typically occupy more massive haloes than other LRGs of the same optical luminosity, so the probability of finding a radio-loud AGN in a massive galaxy at z~0.55 is influenced by the halo mass in addition to the dependence on optical luminosity. If we model the radio-loud fraction of LRGs, F_rad, as a function of halo mass M, then the data are well-fitted by a power law of the form F_rad \propto M^(0.65+/-0.23). The relationship between radio emission and clustering strength could arise either through a higher fuelling rate of gas onto the central black holes of galaxies in the most massive haloes (producing more powerful radio jets) or through the presence of a denser IGM (providing a more efficient working surface for the jets, thus boosting their radio luminosity).Comment: Accepted for publication in MNRA

    The Large Area Radio Galaxy Evolution Spectroscopic Survey (LARGESS): survey design, data catalogue and GAMA/WiggleZ spectroscopy

    Get PDF
    © 2016 The Authors. We present the Large Area Radio Galaxy Evolution Spectroscopic Survey (LARGESS), a spectroscopic catalogue of radio sources designed to include the full range of radio AGN populations out to redshift z ~ 0.8. The catalogue covers ~800 deg 2 of sky, and provides optical identifications for 19 179 radio sources from the 1.4 GHz Faint Images of the Radio Sky at Twenty-cm (FIRST) survey down to an optical magnitude limit of i mod < 20.5 in Sloan Digital Sky Survey (SDSS) images. Both galaxies and point-like objects are included, and no colour cuts are applied. In collaboration with the WiggleZ and Galaxy And Mass Assembly (GAMA) spectroscopic survey teams, we have obtained new spectra for over 5000 objects in the LARGESS sample. Combining these new spectra with data from earlier surveys provides spectroscopic data for 12 329 radio sources in the survey area, of which 10 856 have reliable redshifts. 85 per cent of the LARGESS spectroscopic sample are radio AGN (median redshift z = 0.44), and 15 per cent are nearby star-forming galaxies (median z = 0.08). Low-excitation radio galaxies (LERGs) comprise the majority (83 per cent) of LARGESS radio AGN at z < 0.8, with 12 per cent being high-excitation radio galaxies (HERGs) and 5 per cent radioloud QSOs. Unlike the more homogeneous LERG and QSO sub-populations, HERGs are a heterogeneous class of objects with relatively blue optical colours and a wide dispersion in mid-infrared colours. This is consistent with a picture in which most HERGs are hosted by galaxies with recent or ongoing star formation as well as a classical accretion disc

    The extragalactic radio-source population at 95 GHz

    Full text link
    We have used the Australia Telescope Compact Array (ATCA) at 95GHz to carry out continuum observations of 130 extragalactic radio sources selected from the Australia Telescope 20GHz (AT20G) survey. Over 90% of these sources are detected at 95 GHz, and we use a triple-correlation method to measure simultaneous 20 and 95 GHz flux densities. We show that the ATCA can measure 95GHz flux densities to ~10% accuracy in a few minutes for sources above ~50mJy. The median 20-95GHz spectral index does not vary significantly with flux density for extragalactic sources with S20>150 mJy. This allows us to estimate the extragalactic radio source counts at 95GHz by combining our observed 20-95GHz spectral-index distribution with the accurate 20GHz source counts measured in the AT20G survey. The resulting 95GHz source counts down to 80 mJy are significantly lower than those found by several previous studies. The main reason is that most radio sources with flat or rising spectra in the frequency range 5-20GHz show a spectral turnover between 20 and 95 GHz. As a result, there are fewer 95GHz sources (by almost a factor of two at 0.1 Jy) than would be predicted on the basis of extrapolation from the source populations seen in lower-frequency surveys. We also derive the predicted confusion noise in CMB surveys at 95GHz and find a value 20-30% lower than previous estimates. The 95GHz source population at the flux levels probed by this study is dominated by QSOs with a median redshift z~1. We find a correlation between optical magnitude and 95GHz flux density which suggests that many of the brightest 95 GHz sources are relativistically beamed, with both the optical and millimetre continuum significantly brightened by Doppler boosting.Comment: Replaced with final version (MNRAS, in press), 15 pages plus two landscape data table

    The Australia Telescope 20 GHz (AT20G) Survey: The Bright Source Sample

    Full text link
    The Australia Telescope 20 GHz (AT20G) Survey is a blind survey of the whole Southern sky at 20 GHz (with follow-up observations at 4.8 and 8.6 GHz) carried out with the Australia Telescope Compact Array (ATCA) from 2004 to 2007. The Bright Source Sample (BSS) is a complete flux-limited subsample of the AT20G Survey catalogue comprising 320 extragalactic (|b|>1.5 deg) radio sources south of dec = -15 deg with S(20 GHz) > 0.50 Jy. Of these, 218 have near simultaneous observations at 8 and 5 GHz. In this paper we present an analysis of radio spectral properties in total intensity and polarisation, size, optical identifications and redshift distribution of the BSS sources. The analysis of the spectral behaviour shows spectral curvature in most sources with spectral steepening that increases at higher frequencies (the median spectral index \alpha, assuming S\propto \nu^\alpha, decreases from \alpha_{4.8}^{8.6}=0.11 between 4.8 and 8.6 GHz to \alpha_{8.6}^{20}=-0.16 between 8.6 and 20 GHz), even if the sample is dominated by flat spectra sources (85 per cent of the sample has \alpha_{8.6}^{20}>-0.5). The almost simultaneous spectra in total intensity and polarisation allowed us a comparison of the polarised and total intensity spectra: polarised fraction slightly increases with frequency, but the shapes of the spectra have little correlation. Optical identifications provided an estimation of redshift for 186 sources with a median value of 1.20 and 0.13 respectively for QSO and galaxies.Comment: 34 pages, 19 figures, tables of data included, replaced with version published in MNRA

    Octupole strength in the neutron-rich calcium isotopes

    Full text link
    Low-lying excited states of the neutron-rich calcium isotopes 4852^{48-52}Ca have been studied via γ\gamma-ray spectroscopy following inverse-kinematics proton scattering on a liquid hydrogen target using the GRETINA γ\gamma-ray tracking array. The energies and strengths of the octupole states in these isotopes are remarkably constant, indicating that these states are dominated by proton excitations.Comment: 15 pages, 3 figure

    Spectroscopy of 54^{54}Ti and the systematic behavior of low energy octupole states in Ca and Ti isotopes

    Full text link
    Excited states of the N=32N=32 nucleus 54^{54}Ti have been studied, via both inverse-kinematics proton scattering and one-neutron knockout from 55^{55}Ti by a liquid hydrogen target, using the GRETINA γ\gamma-ray tracking array. Inelastic proton-scattering cross sections and deformation lengths have been determined. A low-lying octupole state has been tentatively identified in 54^{54}Ti for the first time. A comparison of (p,p)(p,p') results on low-energy octupole states in the neutron-rich Ca and Ti isotopes with the results of Random Phase Approximation calculations demonstrates that the observed systematic behavior of these states is unexpected.Comment: 7 pages, 8 figure

    Spectroscopy of 54^{54}Ti and the systematic behavior of low energy octupole states in Ca and Ti isotopes

    Full text link
    Excited states of the N=32N=32 nucleus 54^{54}Ti have been studied, via both inverse-kinematics proton scattering and one-neutron knockout from 55^{55}Ti by a liquid hydrogen target, using the GRETINA γ\gamma-ray tracking array. Inelastic proton-scattering cross sections and deformation lengths have been determined. A low-lying octupole state has been tentatively identified in 54^{54}Ti for the first time. A comparison of (p,p)(p,p') results on low-energy octupole states in the neutron-rich Ca and Ti isotopes with the results of Random Phase Approximation calculations demonstrates that the observed systematic behavior of these states is unexpected.Comment: 7 pages, 8 figure

    3D kinematics through the X-shaped Milky Way bulge

    Get PDF
    Context. It has recently been discovered that the Galactic bulge is X-shaped, with the two southern arms of the X both crossing the lines of sight at l = 0 and | b| > 4, hence producing a double red clump in the bulge color magnitude diagram. Dynamical models predict the formation of X-shaped bulges as extreme cases of boxy-peanut bulges. However, since X-shaped bulges were known to be present only in external galaxies, models have never been compared to 3D kinematical data for individual stars. Aims. We study the orbital motion of Galactic bulge stars in the two arms (overdensities) of the X in the southern hemisphere. The goal is to provide observational constraints to bulge formation models that predict the formation of X-shapes through bar dynamical instabilities. Methods. Radial velocities have been obtained for a sample of 454 bulge giants, roughly equally distributed between the bright and the faint red clump, in a field at (l,b) = (0, −6). Proper motions were derived for all red clump stars in the same field by combining images from two epochs, which were obtained 11 years apart, with WFI at the 2.2 m at La Silla. The observed field contains the globular cluster NGC 6558, whose member stars were used to assess the accuracy of the proper motion measurement. At the same time, as a by-product, we provide the first proper motion measurement of NGC 6558. The proper motions for the spectroscopic subsample are analyzed for a subsample of 352 stars, taking into account the radial velocities and metallicities measured from near-infrared calcium triplet lines. Results. The radial velocity distribution of stars in the bright red clump, which traces the closer overdensity of bulge stars, shows an excess of stars moving towards the Sun. Similarly, an excess of stars receding from the Sun is seen in the far overdensity, which is traced by faint red clump stars. This is explained by the presence of stars on elongated orbits, which are most likely streaming along the arms of the X-shaped bulge. Proper motions for these stars are consistent with qualitative predictions of dynamical models of peanut-shaped bulges. Surprisingly, stars on elongated orbits have preferentially metal-poor (subsolar) metallicities, while the metal rich ones, in both overdensities, are preferentially found in more axisymmetric orbits. The observed proper motion of NGC 6558 has been measured as (μlcos   (b),μb) = (0.30   ±   0.14, −0.43 ± 0.13), with a velocity dispersion of (σlcos(b),σb) = (1.8,1.7) mas/yr. This is the first proper motion measurement for this cluster
    corecore