50 research outputs found

    Variable stiffness material based on rigid low-melting-point-alloy-microstructures embedded in soft poly(dimethylsiloxane) (PDMS)

    Get PDF
    Materials with controllable stiffness are of great interest to many fields, including medicine and robotics. In this paper we develop a new type of variable stiffness material based on the combination of a rigid low-melting-point-alloy (LMPA) microstructure embedded in soft poly(dimethylsiloxane) (PDMS). This material can transition between rigid and soft states by controlling the phase of the LMPA through efficient, direct Joule-heating of the LMPA microstructure. The devices tested demonstrate a relative stiffness change of > 25x (elastic modulus is 40 MPa when LMPA is solid and 1.5 MPa when LMPA is liquid) and a fast transition from rigid to soft states (< 1 s) at low power (< 500 mW). Additionally, the material possesses inherent state (soft and rigid) and strain sensing (GF = 0.8) based on resistance changes

    Stretchable Electroadhesion for Soft Robots

    Get PDF
    With the ongoing rise of soft robots there emerges a need for new soft robotic technologies that can cope with hyper-flexibility and stretchability. In this paper, we describe our developments on enabling controllable adhesion, namely electroadhesion, for the use in soft robots. We present a method to manufacture stretchable electroadhesive pads and characterize their performance when stretching the pad more than double its original length. Our results suggest that the normal detachment force per area slightly decreases with the stretching, while the shear detachment force per area increase with the stretch ratio. These results imply that stretchable electroadhesive pads have higher adaptivity to a given task compared to non-stretchable pads, because the stretchable pads are adaptable in terms of their mechanical stiffness as well as their adhesive force

    A Foldable Antagonistic Actuator

    Get PDF
    We report on an actuator based on dielectric elastomers that is capable of antagonistic actuation and passive folding. This actuator enables foldability in robots with simple structures. Unlike other antagonistic dielectric elastomer devices, our concept uses elastic hinges to allow the folding of the structure, which also provides an additional design parameter. To validate the actuator concept through a specific application test, a foldable elevon actuator with outline size of 70 mm × 130 mm is developed with angular displacement range and torque specifications matched to a 400-mm wingspan micro-air vehicle (MAV) of mass 130 g. A closed-form analytical model of the actuator is constructed, which was used to guide the actuator design. The actuator consists of 125-μm-thick silicone membranes as the dielectric elastomers, 0.2mm-thick fiberglass plate as the frame structure, and 50-μm-thick polyimide as the elastic hinge. We measured voltage-controllable angular displacement up to ±26° and torque of 2720 mN · mm at 5 kV, with good agreement between the model and the measured data. Two elevon actuators are integrated into the MAV, which was successfully flown, with the foldable actuators providing stable and well-controlled flight. The controllability was quantitatively evaluated by calculating the correlation between the control signal and the MAV motion, with a correlation in roll axis of over 0.7 measured during the flights, illustrating the high performance of this foldable actuator

    Variable Stiffness Actuator for Soft Robotics Using Dielectric Elastomer and Low-Melting-Point Alloy

    Get PDF
    A novel variable stiffness actuator composed of a dielectric elastomer actuator (DEA) and a low-melting-point-alloy (LMPA) embedded silicone substrate is demonstrated. The device which we call variable stiffness dielectric elastomer actuator (VSDEA) enables functional soft robots with a simplified structure, where the DEA generates a bending actuation and the LMPA provides controllable stiffness between soft and rigid states by Joule heating. The entire structure of VSDEA is made of soft silicones with an elastic modulus of less than 1 MPa providing a high compliance when the LMPA is active. The device has the dimension of 40 mm length × 10 mm width × 1 mm thickness, with mass of ~1 g. We characterize VSDEA in terms of the actuation stroke angle, the blocked force, and the reaction force against a forced displacement. The results show the controllable actuation angle and the blocked force up to 23.7 ° and 2.4 mN in the soft state, and 0.6 ° and 2.1 mN in the rigid state. Compared to an actuator without the LMPA, VSDEA exhibits ~90× higher rigidity. We develop a VSDEA gripper where the mass of active parts is ~2 g, which is able to successfully hold an object mass of 11 g, exhibiting the high performance of the actuator

    Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators

    Get PDF
    A highly versatile soft gripper that can handle an unprecedented range of object types is developed based on a new design of dielectric elastomer actuators employing an interdigitated electrode geometry, simultaneously maximizing both electroadhesion and electrostatic actuation while incorporating self-sensing. The multifunctionality of the actuator leads to a highly integrated, lightweight, fast, soft gripper with simplified structure and control

    Dielectric Elastomer Actuators for soft-grasping

    Get PDF
    We demonstrate here a configuration of soft actuator which has several features such as, being completely soft, simple, thin, foldable, and stretchable while having uni/bidirectional bending actuation. Theoretically the actuation can be extended to multidirectional. We used Dielectric Elastomer Actuators (DEA) as a base actuation mechanism, and molded PDMS was used as a substrate of the device

    DEA for soft robotics: 1-gram actuator picks up a 60-gram egg

    Get PDF
    We introduce a soft actuator for grippers using DEA capable of bending actuation. The actuator is also able to generate the electro-adhesion by the fringe field formed at the edges of the electrodes. The adhesion improves the holding force and ensures the conformation of the structure to the object. After the characterization of the actuator, we develop a 2-finger soft gripper capable of holding various objects. The gripper has a mass of around 1 g, and consists of a few cm long actuation parts, realizing simple open-close movement. The compliance of the gripper leads to conformation of the structure against the object surface, which is proven by successful handling of objects with different geometries such as a toothbrush, a flat paper, and a ping pong ball. The effect of the electro-adhesion is visible when the paper is held with its flat shape meaning that an adhesion force against gravity exists. Also, by the fact that the conformed structure increases the contact area, the holding force is improved while avoiding damaging the object, which is highlighted by the ability to hold a raw egg weighing around 60 g. This soft gripper, combining both actuation and electro-adhesion, illustrates the potential use of DEA for soft robotics

    No Reliable Association between Runs of Homozygosity and Schizophrenia in a Well-Powered Replication Study

    Get PDF
    It is well known that inbreeding increases the risk of recessive monogenic diseases, but it is less certain whether it contributes to the etiology of complex diseases such as schizophrenia. One way to estimate the effects of inbreeding is to examine the association between disease diagnosis and genome-wide autozygosity estimated using runs of homozygosity (ROH) in genome-wide single nucleotide polymorphism arrays. Using data for schizophrenia from the Psychiatric Genomics Consortium (n = 21,868), Keller et al. (2012) estimated that the odds of developing schizophrenia increased by approximately 17% for every additional percent of the genome that is autozygous (β = 16.1, CI(β) = [6.93, 25.7], Z = 3.44, p = 0.0006). Here we describe replication results from 22 independent schizophrenia case-control datasets from the Psychiatric Genomics Consortium (n = 39,830). Using the same ROH calling thresholds and procedures as Keller et al. (2012), we were unable to replicate the significant association between ROH burden and schizophrenia in the independent PGC phase II data, although the effect was in the predicted direction, and the combined (original + replication) dataset yielded an attenuated but significant relationship between Froh and schizophrenia (β = 4.86,CI(β) = [0.90,8.83],Z = 2.40,p = 0.02). Since Keller et al. (2012), several studies reported inconsistent association of ROH burden with complex traits, particularly in case-control data. These conflicting results might suggest that the effects of autozygosity are confounded by various factors, such as socioeconomic status, education, urbanicity, and religiosity, which may be associated with both real inbreeding and the outcome measures of interest

    Age at first birth in women is genetically associated with increased risk of schizophrenia

    Get PDF
    Prof. Paunio on PGC:n jäsenPrevious studies have shown an increased risk for mental health problems in children born to both younger and older parents compared to children of average-aged parents. We previously used a novel design to reveal a latent mechanism of genetic association between schizophrenia and age at first birth in women (AFB). Here, we use independent data from the UK Biobank (N = 38,892) to replicate the finding of an association between predicted genetic risk of schizophrenia and AFB in women, and to estimate the genetic correlation between schizophrenia and AFB in women stratified into younger and older groups. We find evidence for an association between predicted genetic risk of schizophrenia and AFB in women (P-value = 1.12E-05), and we show genetic heterogeneity between younger and older AFB groups (P-value = 3.45E-03). The genetic correlation between schizophrenia and AFB in the younger AFB group is -0.16 (SE = 0.04) while that between schizophrenia and AFB in the older AFB group is 0.14 (SE = 0.08). Our results suggest that early, and perhaps also late, age at first birth in women is associated with increased genetic risk for schizophrenia in the UK Biobank sample. These findings contribute new insights into factors contributing to the complex bio-social risk architecture underpinning the association between parental age and offspring mental health.Peer reviewe

    Genetic correlation between amyotrophic lateral sclerosis and schizophrenia

    Get PDF
    A. Palotie on työryhmän Schizophrenia Working Grp Psychiat jäsen.We have previously shown higher-than-expected rates of schizophrenia in relatives of patients with amyotrophic lateral sclerosis (ALS), suggesting an aetiological relationship between the diseases. Here, we investigate the genetic relationship between ALS and schizophrenia using genome-wide association study data from over 100,000 unique individuals. Using linkage disequilibrium score regression, we estimate the genetic correlation between ALS and schizophrenia to be 14.3% (7.05-21.6; P = 1 x 10(-4)) with schizophrenia polygenic risk scores explaining up to 0.12% of the variance in ALS (P = 8.4 x 10(-7)). A modest increase in comorbidity of ALS and schizophrenia is expected given these findings (odds ratio 1.08-1.26) but this would require very large studies to observe epidemiologically. We identify five potential novel ALS-associated loci using conditional false discovery rate analysis. It is likely that shared neurobiological mechanisms between these two disorders will engender novel hypotheses in future preclinical and clinical studies.Peer reviewe
    corecore