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A child easily picks up with his hand objects of an enormous variety of shapes, even if they 

are fragile or highly deformable. In order to mimic this dexterity, fingered robotic grippers 

often use many actuators in combination with feedback control based on visual, tactile, force 

and angular position sensing, followed by trajectory planning[1-3]. If the target object is fragile, 

such as a chicken egg for example, the human hand adapts the grasping force, exploiting the 

compliance of tissue in the fingers and sensing the shear movement to safely grip the object[4]. 

Moreover, in the case of deformable objects such as a water balloon, human hands can sense 

the stiffness and follow the deformation while continuously regulating force and finger 

position. Replicating these grasping properties with traditional robotic grippers typically 

require complex sensing, motor accuracy, modelling, and learning[5-9]. Endowing robotic 
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grippers made with rigid components with the versatility to grasp objects with many different 

shapes and differing material properties can be computationally challenging, costly and slow, 

and require external sensors. For this reason, robotic grippers typically have a specialized 

design for a specific object type[10]. Soft robotics [11,12], especially when combined with 

artificial skins for distributed pressure and force sensing[11,13], offer a path towards structures 

where the intrinsic compliance of elastomers allows for handling complex objects with 

simpler control thanks to passive adaptation. Early investigation on shape-adaptable grippers 

exploited a variety of technologies such as granule-filled bag from which air is evacuated [14] 

(now known as granular jamming[15]), electrorheological (ER) fluids[16], ER fluid with 

electroadhesion[17], pneumatic actuators[18], and shape memory foams[18]. Yet even for current 

soft robots, many tasks that are easy for human hands, such as handling flat objects and 

deformable objects, remains a major challenge. 

 

We demonstrate here a novel method to create soft grippers based on electrostatic actuation 

with intrinsic electroadhesion force, which enables them to manipulate deformable, fragile 

objects of any shape with a single control signal, and even flat objects like paper. We validate 

the method with a two-fingered gripper, shown in Figure 1, weighing 1.5 g, that can pick up a 

wide range of objects, including: a fragile, highly-deformable water-filled thin membrane 

balloon (35.6 g), a raw chicken egg (60.9 g), a flat sheet of paper (0.8 g), a Teflon tube (80.8 

g), and a metallic can (82.1 g). These unprecedented capabilities are enabled by 

simultaneously maximizing electroadhesion and electrostatic actuation, while allowing self-

sensing in a new design of dielectric elastomer actuators (DEAs) employing an interdigitated 

electrode geometry. The mechanical gripping force produced by electrostatic actuation is low 

(1 mN), thereby allowing handling of very fragile objects, while the electroadhesion force can 

produce high holding force (3.5 N shear force for 1 cm2), thereby enabling the lifting of heavy 

objects. The electroadhesion force also enables the picking up of flat and deformable objects. 
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The gripper can be controlled only by a single control voltage thanks to the simple, compliant 

composite structure, similar in overall concept to[15, 19-24]. These features lead to a highly-

integrated, multifunctional conformal soft gripper with fast motion (~100 ms to close fingers), 

high holding force and simplified structure and control, paving a way for sensitive, highly 

versatile grippers for soft robotics. 

 

A key novelty, essential to reach human-like performance, is the simultaneous optimization of 

both electroadhesion and electrostatic actuation of a bending DEA by a novel electrode 

arrangement, allowing both in-membrane and fringing electric fields to be maximized, 

generating over 10 times higher electroadhesion force than would be obtained from a 

conventional DEA electrode configuration. The device is highly versatile, as bending motion 

and electroadhesion forces can be turned on one at a time or both simultaneously simply by 

applying suitable control voltages, yet the device retains a very simple architecture.  

 

DEAs are an electrostatically-actuated type of electroactive polymer material[25,26]. They are 

compliant (~1 MPa of elastic modulus), fast (response time less than 200 µs[27,28]), and 

capable of self-sensing the actuator deformations[29]. The DEA structure consists of a thin 

elastomer membrane sandwiched between two highly compliant soft electrodes[30]. When a 

voltage is applied across the membrane thickness (electric fields typically 50 to 100 V/µm; for 

the gripper described here, 3.5 kV is applied across a 60 µm-thick silicone membrane), 

opposite charges on the electrodes generate an electrostatic pressure (the Maxwell stress) 

leading to compression of the structure in the thickness direction and expansion in the planar 

directions, which can lead to bending. The Maxwell stress is proportional to the square of the 

electric field in the elastomer membrane in the direction normal to the surface[31]. For DEA 

actuation, one generally only considers this normal electric field in the elastomer. However 

the charges on the electrodes also create fringe electric fields at the edges of the electrodes. 
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These fringe fields can generate electroadhesion in nearby objects, as the electric fields induce 

polarization of surface charges on the objects, resulting in attractive forces to the charges on 

the electrodes. In DEA applications, these forces are usually ignored and their use has not 

been reported to date.  

 

Electroadhesion has been used in wafer handling[32], wall climbing robots [33,34],  rigid and 

flexible grippers [35,36]. Early development also showed an end effector composed of a rigid 

flat substrate and an ER fluid encapsulated membrane[17]. Electroadhesion has many 

advantages over comparable adhesion technologies, such as vacuum or gecko-inspired 

adhesion. Vacuum handling technologies are widely used in industry, but are limited to 

objects with smooth, non-porous surfaces. Additionally, the need for vacuum pump and 

tubing adds significant bulk. Gecko-inspired adhesion uses van der Waals forces between 

passively deformed micro fibers and the target surface. However, in this technology, the 

adhesion mechanism relies upon external mechanical preloading in the normal or shear 

direction[21, 37-41], which may cause unpredictable deformation and possible damage when the 

target object is deformable or fragile. Reversibility of the gecko adhesion is also challenging 

to achieve with lightweight objects, and the adhesion mechanism works poorly on low 

surface-energy materials, such as Teflon[42]. Electroadhesion can be used with smooth and 

rough surfaces, with dielectric objects and with metallic objects[32,35] and is fully electrically 

controlled, obviating the need for additional actuators to pick up or release an object. A 

potential drawback is a small residual adhesion force after removing the voltage. However, 

these residual forces are reported to be extremely low for dielectric objects, and last for only a 

few seconds[43]. For conductive objects the small residual force can be greatly reduced by 

operating at low frequency AC voltage rather than DC[32]. 
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The novelty of our method―a simple and effective method for simultaneously maximizing 

both electroadhesion and electrostatic actuation of a DEA actuator―lies in the segmentation 

of the compliant electrodes into a bilayer offset interdigitated four electrode geometry (Figure 

2a), in contrast to conventional DEA designs that have only 2 uniform parallel electrodes. In 

order to maximize the electroadhesion force and the electrostatic actuation, the electrodes are 

wired such that adjacent electrode segments on the same planar surface are at opposite 

potentials, as are those electrodes that overlap each other across the membrane (Figure 2b). 

When a voltage bias is applied across the electrodes, fringe electric fields are generated at the 

segmentation boundaries providing homogeneous adhesion forces over the entire surface 

(Figure 2b,c), contrary to conventional DEA designs that can generate adhesion forces only at 

the periphery. The same applied voltage provides electrostatic actuation in the region where 

electrodes directly overlap. The 4 electrode configuration enables the same device to generate: 

a) simultaneous electroadhesion and DEA actuation, or b) pure DEA actuation only (with no 

electroadhesion), or c) electroadhesion only (with no DEA actuation) simply by applying the 

appropriate voltages to the 4 electrodes (as shown in Supplementary Figure S1), thus allowing 

the same device to be reconfigured for different applications by applying control voltages. 

The passive silicone layers, sandwiching the DEA (Figure 2a), serve to insulate the electrodes 

to avoid electrical breakdown between adjacent electrodes or short-circuit via the external 

object. The bottom passive layer is in contact with the object being picked up. For these 

passive layers, a stiffer elastomer, Sylgard 184 (~2.6 MPa of elastic modulus with curing 

temperature at 150 C°[44]) is used to minimize inherent tackiness, allowing smooth releasing 

of objects. The bending actuation of the gripper fingers is obtained by using a uniaxially pre-

stretched DEA bonded to one or two passive layers (Figure 2d)[45], similar to[46]. In this 

configuration, the structure has a curled shape at zero applied voltage where the internal stress 

of the pre-stretched DEA and the bending moment of the passive layers are at their 

equilibrium state. When a voltage is applied, the electrostatic pressure reduces the internal 
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stress in the DEA and releases the bending moment in the passive layers, leading to voltage-

controllable bending actuation towards a flat shape. The initial bending angle, the actuation 

stroke, and the actuation force can be modulated by the mechanical parameters, such as, 

elastic modulus and thickness of both the DEA and the passive layers, and the DEA pre-

stretch. The larger percentage change in capacitance of the device as it uncurls enables self-

sensing of the bending angle (Supplementary Figure S2), as reported for other DEAs. 

 

The electroadhesion force is proportional to the fringing fields, which are generated primarily 

at the electrode edges. For a given area, the total edge length for the interdigitated electrode is 

much longer than that of a uniform (i.e., no gaps) electrode, thanks to the gaps between the 

segmented boundaries. Hence, one expects a much larger total electroadhesion force for an 

interdigitated geometry than for a uniform geometry, as well as a force nearly uniformly 

distributed over the area for the interdigitated shape, but only a force localized at the 

periphery for the uniform shape. The gaps of the interdigitated electrode however lead to a 

lower electrostatic actuation due to the smaller overlapping electrode area across the DEA 

membrane, compared to the uniform electrode. The gaps can be narrowed to maximize DEA 

actuation, but the gap size must be sufficiently large to avoid electrical breakdown in the 

passive layer insulating the segmented electrodes (of order 100 µm gaps are needed to 

withstand 5 kV potential difference, essentially resulting from the breakdown field strength of 

silicone elastomer, typically 50 to 100 V/µm). 

 

We assess the impact of electrode geometry on electroadhesion and electrostatic actuation 

through characterization of experimental devices to address the trade-off and an optimized 

design for the gripper. Additionally, understanding characteristics on electroadhesion is 

important since our DEA design, a bilayer offset interdigitated electrodes, is essentially 

different from other existing electroadhesion devices which have electrodes on single surface. 
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We use two electrode geometries for characterization: an interdigitated shape and a square 

shape. 

 

We first investigate the spatial distribution of the electroadhesion force. We raster a small 

force probe (10 mm diameter) over test samples with active electrode area of 40 mm × 40 mm 

in a passive outline dimension of 70 mm × 70 mm (Figure 3a,b), while recording the normal 

component of local electroadhesion force. The thickness of the top and the bottom passive 

layers are 50 µm. There is no measurable stiction between the passive layer and the probe 

interface. Figure 3c plots the measured local normal adhesion force at applied voltage of 2.5 

kV, and clearly represents the effect of the interdigitated design over the square design. The 

square electrode generates a local normal force of approximately 15 mN only at the periphery, 

and a force of less than 0.1 mN for all interior points. For the interdigitated electrode, the 

local force is much larger and homogeneous over the electrode surface; ~120 mN on average 

for all the points on the electrode, more than 1000 times larger force at the interior points 

compared to the square design. The result proves that the scaling of the electroadhesion force 

is proportional to the total electrode area for the interdigitated electrode, but only proportional 

to the periphery length for the square electrode. Also, for the gripper, the uniform electrode 

configuration will not enable holding an object smaller than the overall electrode area due to 

the absence of electroadhesion force at the center. The total electroadhesion force of the 

interdigitated design can be calculated by dividing the device electrode area (1600 mm2) by 

the probe area (78.5 mm2), and multiplying the measured local normal force (~120 mN), as 

this design scales the adhesion force proportional to area. Similarly, the total adhesion force 

of the square design can be obtained from the total periphery of the device (160 mm), the 

probe diameter (10 mm), and the measured maximum local normal force (~15 mN), based on 

the fact that this design generates the force only at the electrode periphery. The interdigitated 
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electrode produces 10 times higher total electroadhesion force (~2400 mN) than to the square 

electrode (~240 mN). 

 

According to the literature, the adhesion force scales with the square of the fringe electric 

field intensity that induces surface charges by polarization for dielectric materials[47,48] , and 

by electrostatic induction for conductive materials[48]. We investigate the influence of two 

important parameters – applied voltage (0 V, 2.5 kV, and 5 kV) and bottom passive layer 

thickness (50 µm and 400 µm) – on the magnitude of the electroadhesion force, using 

simplified devices shown in Figure 4a that represent one finger of the gripper with active 

overall electrode area of 10 mm × 10 mm with passive outline dimension of 15 mm × 15 mm. 

These devices are smaller than those previously discussed, but are the same size as the 

gripping part of the gripper, and allow using a probe covering the entire electrode area (10 

mm × 10 mm) to measure the electroadhesion force in both shear force required to displace 

the probe, and normal force to detach it from the device. The measured shear force plotted in 

Figure 4b scales with the voltage and the inverse of the thickness, in the manner shown in the 

literatures on conventional electroadhesion devices[32, 49-52]. For the thinnest passive layer, the 

shear force at 5 kV is 3.5 ± 0.3 N (corresponds to 35 ± 3 kPa given the 10 mm × 10 mm 

overall electrode area) for the interdigitated electrode, and 1.8 ± 0.1 N (18 ± 1 kPa) for the 

square electrode. The shear forces at zero applied voltage are due to static friction. The 

measured normal force (Figure 4c) scales with both the voltage and the inverse of the 

thickness in the same way as the shear force does. Since there is no inherent stiction between 

the passive layer and the interface, no normal force is seen at zero voltage. The normal force 

at 5 kV is 1.3 ± 0.2 N (13 ± 2 kPa) for the interdigitated electrode, and 0.7 ± 0.1 N (7 ± 1 kPa) 

for the square electrode. The factor of two between measured electroadhesion forces for 

interdigitated and square electrodes is consistent with the ratio of edge lengths producing 

fringing fields for the two configurations. For a fixed electrode area, one could increase the 
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electroadhesion force dramatically by patterning smaller gaps between the lines to enable 

longer total edge length. One is ultimately limited by fabrication resolution, electrical 

breakdown in small gaps, and the reduced penetration depth of the fringing in the object, since 

the fringing distance scales with electrode gap. 

 

We then characterize the actuation stroke angle and the blocked force as functions of the 

applied voltage, using the same simplified devices with the bottom layer thickness of 400 µm 

(Figure 4a). Figure 4d,e plot the measured actuation stroke angle and the blocked force, and 

show that the reduction of the actuation performance for the interdigitated electrode due to the 

gaps is only ~20% compared to the square electrode. The reduction corresponds to smaller 

electrode overlap area; 83.75 mm2 in the interdigitated electrode, and 100 mm2 in the square 

electrode for the simplified devices. The magnitude of the blocked force is in the mN order, 3 

orders of magnitude smaller than the electroadhesion force, representing the low mechanical 

grasping force of the gripper allowing handling of fragile and deformable objects, while the 

holding force is provided mostly by the shear electroadhesion force. The fact that 10 times 

higher electroadhesion force with only 20% reduction of the actuation performance can be 

generated from the interdigitated electrode design clearly shows the advantage for this design. 

 

We fabricate the two-finger soft gripper (Figure 1) as a proof of concept to demonstrate its 

versatility at picking up and releasing different types of objects. The gripper structure, shown 

in Figure 1a, is realized as a planar extension of the DEA design (Figure 2a). This simple 

structure is lightweight (~1.5 g) and allows for fast movement (it takes ~100 ms to close the 

fingers, Supplementary Video S1). The geometry of the electrodes is designed to provide 

stronger adhesion forces around the fingertips by the fine interdigitated segmentation, and the 

other sections generate larger actuation stroke. The gripper is successful at handling various 

objects (Figure 1b-f). The electroadhesion force ensures adaptation of the actuated compliant 



    Accepted in Advanced Materials 2015 

11 
 

gripper fingers, and realizes unprecedented functionality and performance in the device. The 

large holding force provided by the shear electroadhesion force (on the order of Newtons, 

Figure 4b) and the low mechanical grasping force provided by the actuation (on the order of 

milli-Newtons, Figure 4e) allow for easy handling of fragile objects such a raw chicken egg 

(Figure 1b, and Supplementary Video S1). The normal electroadhesion force allows for 

picking up flat objects such as a paper (Figure 1d, and Supplementary Video S1) without 

grasping, which is difficult for other finger-based grippers given the absence of features that 

can be grabbed. The functionality of the gripper is most impressively highlighted when the 

object is deformable (Figure 1c). The low mechanical grasping force minimizes the object’s 

deformation, the normal adhesion force keeps the gripper’s fingers in conformal contact with 

the target as it deforms, and the shear adhesion force provides the holding force. The 

deformable object, a water-filled silicone membrane balloon, is not only highly deformable 

but also very fragile (membrane thickness of 25 µm), and it breaks easily when picked up by 

the human hand. These challenging features make grasping extremely difficult, and handling 

of such highly sensitive objects with a gripper has not been reported. Picking up of slippery 

objects (Teflon tube, Figure 1e), can be difficult for other grasping devices and the Gecko-

inspired adhesion technology[42]. Handling of a metallic oil can (Figure 1f) proves that the 

electroadhesion is suited for conductive objects as well as dielectric objects. 

 

We have described a method to create a lightweight, fast, all-silicone, soft gripper, based on a 

novel DEA design simultaneously maximizing electroadhesion and electrostatic actuation. 

The fact that handling of such a wide, unprecedented range of challenging objects is achieved 

by a single device with simple control input (Figure 1b-f), is a main advantage and novelty of 

our gripper over other existing grippers. The novel DEA design shows advantage for grasping 

application over traditional DEA design as it can produce up to 10 times higher 

electroadhesion forces at the cost of only ~20 % reduction in actuation performance. The total 
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electroadhesion force generated from our DEA design, a bilayer offset interdigitated 

electrodes, can be much higher (order of several times) by optimizing the electrode geometry 

such as the gap and the segmented electrode width, and the thickness of the passive layer 

(Figure 4b-c), as has been suggested in electroadhesion devices with single surface 

electrode[50, 52-54]. The sensing capability of the device (Supplementary Figure S2) makes it an 

active smart skin enabling shape recognition to understand the object geometry when such 

information cannot be provided. The interdigitated electrodes can also be used to measure 

dielectric properties[55] of the object and thus gain insight into its composition. The soft 

gripper technology described here has features that make it suitable for many applications. 

The lightweight feature encourages using the device in small transportation drones[56], and the 

use of silicones i.e., a biocompatible material allows grasping tasks in food industry and 

medical (e.g., tissue handling [57]). The simplicity of the gripper structure has a high design 

flexibility able to adapt this method to produce a wide range of grippers of different size and 

shape, for example with 3 long fingers. The interdigitated electrode geometry helps the 

scaling by homogeneous distribution of adhesion forces (Figure 3c), and also allows locally 

tailoring the electrode geometry parts responsible for the adhesion and the actuation at 

different desired locations (e.g., our gripper shown in Figure 1a). As a multifunctional 

polymer actuator, the DEA technology described here could enable other soft robots beyond 

grippers. The actuation and the controllable high friction force (i.e., electroadhesion force) on 

the ground surface yield kinematically more efficient locomotion in bioinspired caterpillar 

robots[58] and gait robots[59], and enable their wall-climbing functionality (an example of rigid 

robots in[60]). Soft modular robots[61] are another promising application where the adhesion 

works as their interconnection, and the actuation moves the connected structure, or localizes 

each robot. Finally, all the applications mentioned above can benefit from the simple, highly 

integrated system thanks to the multifunctionality of the DEA design—electroadhesion, 
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actuation with different output characteristics, and sensing— as highlighted in the presented 

soft gripper. 

 

Experimental Section 

Fabrication of the experimental devices and the gripper 

We used the silicone Nusil CF19-2186 to fabricate the elastomer membranes. After mixing 

the two components of Nusil CF19 per manufacturer recommendations, the silicone was 

blade-casted on Polyethylene terephthalate (PET) film using a variable gap applicator 

(Zehntner ZUA2000) and a film applicator coater (Zehntner ZAA2300), then cured for 60 

min at 80 °C, The thickness depends on the applicator gap. DEA membranes of two 

thicknesses were used: 80 µm and 60 µm for the experimental devices and for the gripper, 

respectively. The membranes were pre-stretched uniaxially with a ratio of 1.2, and mounted in 

a Polymethyl methacrylate (PMMA) holding frame using a silicone adhesive foil (Adhesives 

Research ARclear 8932EE) for electrode patterning. The passive silicone layers (Dow 

Corning Sylgard 184) were also produced with the same blade casting process, and different 

curing temperatures were used: 80 °C and 150 °C for the simplified devices and the gripper, 

respectively. The thickness of the membranes and the passive layers was measured using a 

white light transmission interferometer. We used the same composition, patterning method, 

and curing condition of the compliant electrode described in[27]. We used oxygen plasma 

surface activation to chemically bond the passive layers onto the DEA membrane with 

patterned electrodes. The electrical connections were realized by filling a silver epoxy inside 

punched holes made in the structure, and pieces of conductive tape were placed. After the 

wiring, the device was separated from the holding frame. 

Electroadhesion measurement: 

The experimental setup for shear and normal force measurements (Figure 4b,c) is 

schematically shown in Supplementary Figure S3. The bending part of the simplified devices 
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(free standing part) was flattened and fixed on to a PMMA plate, and on the top, a probe 

consisted of an interface material and PMMA is placed. We used a thin paper as the interface 

between the device and the probe to avoid any influence of stiction to the bottom passive 

layer in contact. The probe was connected to a motorized stage (Zaber T-LSR150B) via a load 

cell (ATI Industrial Automation Nano 17), string, and a spring. The shear force and the 

normal force were taken as the maximum detachment force when the interface was pulled 

away in horizontal and vertical direction, respectively. For the local normal force 

measurement (Figure 3), a probe of 10 mm diameter and a low capacity load cell (Applied 

Measurements UF1-55) were used. A high voltage supply (Auckland Biomimetics Lab EAP 

controller) was used to activate the devices. 

Actuation stroke and blocked force measurements: 

We used a CCD camera and image processing in MATLAB to determine the tip angle of the 

simplified gripper devices to characterize the actuation stroke angle (Figure 4d inset). For the 

blocked force measurement, a load cell (Futek LRF400) was used (Figure 4e inset). A high 

voltage supply (Auckland Biomimetics Lab EAP controller) was used to activate the devices. 

Gripper demonstration: 

The picking up demonstration was performed using a motorized stage (Zaber T-LSR150B) 

controlled via a laptop computer, where the gripper was mounted using a silicone tube and 

PMMA parts. A high voltage supply (Auckland Biomimetics Lab EAP controller) was used to 

activate the device. 

Fabrication of fragile, highly deformable water-filled thin membrane balloon: 

A soft silicone membrane (Bluestar Silicones Silbione LSR 4305) of thickness 25 µm was 

produced using the same fabrication process as for the DEA membranes, and mounted in a 

PMMA circular holding frame using a silicone adhesive foil (Adhesives Research ARclear 

8932EE) without any pre-stretch. Water was poured on the membrane, resulting in a bowl 
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shape due to weight of the water. The membrane was carefully twisted to close the opening, 

forming a balloon which was sealed using a silicone glue (Dow Corning 734 flowable sealant). 
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Figure 1. Structure of the electroadhesion-enabled soft gripper, and demonstration of gripping 

different objects. (a) The gripper consists of a pre-stretched elastomer membrane with 

patterned compliant electrodes laminated between two passive silicone layers. Different 

colors of the electrodes represent their polarity (red is positive, and black is negative). (b) 

Picking up objects is performed using an external motorized stage where the gripper is raised 

and lowered by an external motorized stage to act as an end effector (see also Supplementary 
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Video S1). The gripper has open fingers (curled shape) at zero applied voltage. When the 

voltage is applied (3.5 kV), the fingers are actuated to close around the object, here a raw 

chicken egg (60.9 g), while the electroadhesion force is simultaneously generated. The object 

is then picked up thanks to the holding force provided by the electroadhesion while the 

motorized stage is moved. Releasing of the object is achieved by a reverse of the operating 

procedure explained above. With the same operating principle, picking up demonstration is 

performed for (c) a fragile, highly deformable water-filled thin membrane balloon (35.6 g), 

(d) a flat paper (0.8 g), (e) a Teflon tube (80.8 g), and (f) a metallic oil can (82.1 g). 

Conventional grippers cannot manipulate such a wide range of challenging objects. 
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Figure 2. Operating principle of the novel DEA design for the gripper. (a) Each of the 

electrodes sandwiching the elastomer membrane consists of two interdigitated electrodes. 

Two passive layers made of a silicone are laminated on the top and bottom. The bottom 

passive layer touches the object being picked up. (b) DEA actuation (bending motion in this 

multilayer configuration) is proportional to the square of the electric field in the membrane in 

the direction normal to the surface, and the electroadhesion force is proportional to the square 

of the fringe electric fields. For optimum combined DEA and electroadhesion operation, one 

applies the same voltage difference between the neighboring interdigitated electrodes on the 

top and bottom layers, but laterally offset so as to obtain an alternating high electric field 

normal to the membrane (where top and bottom electrodes overlap), and strong fringe fields 

in the gaps at the segmentation boundaries. Other electrodes configurations lead to different 

actuation and gripping modes (Supplementary Figure S1). (c) These fringe fields create 

electroadhesion forces on the object surface in contact, which are used to generate substantial 

holding forces in the gripper.  The electroadhesion is maximum in the region where the 

electrodes are interdigitated, allowing tailoring which parts of the electroadhesion grip, and 

parts which only bend. (d) DEA gripper consists of a pre-stretched DEA bonded to passive 

layers. The structure is curled at zero applied voltage. Applying voltage to the DEA generates 

electrostatic pressure, which reduces the stress in the DEA, uncurling the structure towards a 

flat shape. 
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Figure 3. Characterization of the spatial dependence of the electroadhesion force. (a) The 

experimental devices used for the characterization (top: interdigitated, bottom: square). 

Electrode area is 40 mm x 40 mm. (b) The local electroadhesion force is measured at 13 

points along the lines crossing the center of the devices (XX’ and YY’ axes) using a probe of 

diameter 10 mm. (c) (left) The measured local normal electroadhesion force as a function of 

the probe position for an applied voltage of 2.5 kV in XX’ axis, and (right) in YY’ axis. The 

interdigitated electrode generates much larger and more homogeneous local forces over the 

electrode surface thanks to the segmented electrode boundaries, while the square electrode 

produces forces only at the periphery. For every measurement, 2 devices are characterized 3 

times each, and the average force is reported. 
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Figure 4. Characterization of the total electroadhesion force and of the actuation performance 

on simplified devices. (a) (top) The simplified devices used for the characterization (with 400 

µm-thick bottom passive layer facing to the interface), and (bottom) their dimension (bending 

part). The cross-section of the devices is shown in Supplementary Figure S3. (b) The 

measured electroadhesion shear force as a function of applied voltage for different bottom 

passive layer thicknesses. The shear force scales with both voltage and thickness: increasing 

the voltage and decreasing the thickness increase the adhesion force. The forces at 0 V are due 

to static friction. (c) The measured electroadhesion normal force as a function of the applied 

voltage for different passive layer thicknesses. The normal force scales with the voltage and 

the thickness in the same way as the shear force does. Since there is no inherent stiction 

between the passive layer and the interface, no normal force is seen at 0V. (d) The measured 

actuation stroke angle as a function of the applied voltage. The interdigitated electrode shows 

~20 % lower actuation stroke compared to the square electrode. The inset shows the bending 

actuation of the device with the interdigitated electrodes. The actuation stroke is obtained as 

the tip angle difference from the initial angle. (e) The measured blocked force as a function of 
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the applied voltage. A trend similar to the actuation stroke, i.e., ~20 % reduction in the 

interdigitated electrode is observed. The inset shows a sample being measured. The blocked 

force is obtained by putting the probe of a load cell on the tip of the samples at the initial 

shape. For every measurement, 4 devices are characterized 3 times each, and their average is 

taken. 
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Supplementary Figures 

 

 
Figure S1. Different output characteristics of the novel DEA design. (a) Initial state of the 

DEA (without any applied voltage). (b) Activation with the wiring used for the gripper 

configuration (described in the main text), which creates electrostatic actuation with higher 

electroadhesion force. (c) Activation with opposite potentials across the thickness direction 

like usual DEAs results in electrostatic actuation with fringe electric fields at the edges, 

generating actuation with reduced electroadhesion force. (d) Activation with opposite 

potentials on the same planar surface and same potentials in the thickness direction results in 

fringe electric fields on the surface, i.e., electroadhesion forces while no electrostatic 

actuation is produced. 
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Figure S2. Measured capacitance as a function of the bending angle. The capacitance 

between the electrodes changes in response to bending of the structure (i.e., curvature).We 

measure the capacitance of the samples used in the characterization described in the main text. 

The samples are wired in the same way as the gripper configuration (Supplementary Figure 

S1b), where a LCR meter (Agilent E4980A) is used to measure capacitive changes. The 

structure is passively bent in two directions using a linear stage while the angle θ is measured 

with a CCD camera. The outline colors of the insets correspond to the positive or the negative 

bending angle which are shown in the corresponding color domains. Due to different 

thicknesses in the passive layers (50 µm and 400 µm), the devices show capacitance change 

in two bending directions up to ± 150°. In this measurement, 4 samples are measured 3 times 

each and their average is taken. The average capacitance at 0° is 39.9 pF. 
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Figure S3. Electroadhesion force measurement. (a) The shear force is obtained as maximum 

detachment force when the interface part consisted of a paper and a PMMA plate is moved by 

an external motorized stage which is connected to the interface via a load cell, a spring, and a 

string. The sample is fixed on a mount. (b) With the same setup, the normal force is obtained 

by changing the moving direction of the interface part. 
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Supplementary Video 

 

Supplementary Video S1: Demonstration of the gripper picking up a broad range of objects 

(a raw chicken egg, a flat paper, and a water balloon). The gripper is raised and lowered by an 

external motorized stage to acts as an end effector. 

 
https://goo.gl/IYXnX0 

 


