415 research outputs found

    Grabbing your ear: rapid auditory-somatosensory multisensory interactions in low-level sensory cortices are not constrained by stimulus alignment.

    Get PDF
    Multisensory interactions are observed in species from single-cell organisms to humans. Important early work was primarily carried out in the cat superior colliculus and a set of critical parameters for their occurrence were defined. Primary among these were temporal synchrony and spatial alignment of bisensory inputs. Here, we assessed whether spatial alignment was also a critical parameter for the temporally earliest multisensory interactions that are observed in lower-level sensory cortices of the human. While multisensory interactions in humans have been shown behaviorally for spatially disparate stimuli (e.g. the ventriloquist effect), it is not clear if such effects are due to early sensory level integration or later perceptual level processing. In the present study, we used psychophysical and electrophysiological indices to show that auditory-somatosensory interactions in humans occur via the same early sensory mechanism both when stimuli are in and out of spatial register. Subjects more rapidly detected multisensory than unisensory events. At just 50 ms post-stimulus, neural responses to the multisensory 'whole' were greater than the summed responses from the constituent unisensory 'parts'. For all spatial configurations, this effect followed from a modulation of the strength of brain responses, rather than the activation of regions specifically responsive to multisensory pairs. Using the local auto-regressive average source estimation, we localized the initial auditory-somatosensory interactions to auditory association areas contralateral to the side of somatosensory stimulation. Thus, multisensory interactions can occur across wide peripersonal spatial separations remarkably early in sensory processing and in cortical regions traditionally considered unisensory

    Estimates of hypolimnetic oxygen deficits in ponds

    Full text link
    Shallow tropical integrated culture ponds in the Pearl River Delta, China, have been found to stratify almost daily, with high organic loadings and dense algal growth. The dissolved oxygen (DO) concentration is super-saturated in the epilimnion and is under 2 mg/l in the hypolimnion (>1m). The compensation depth corresponds to twice the Secchi disk depth ranging from 50 to 80cm. As a result, little or no net oxygen is produced in the hypolimnion (>1m). The low DO concentration in the hypolimnion causes organic materials, such as unused organic wastes and senescent algae cells, to be incompletely oxidized, since the rate of oxygen consumption by oxidable matter in water is dependent on the dissolved oxygen concentration in water. This material becomes the source of hypolimnetic oxygen deficits (HOD) which can drive whole pond DO to a dangerously low level, should sudden destratification occur. An improved estimate of hypolimnetic oxygen deficits is introduced in this article, and the advantages of this method are discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72126/1/j.1365-2109.1989.tb00341.x.pd

    One-pot, regiospecific assembly of (E)-benzamidines from δ- and γ-amino acids via an intramolecular aminoquinazolinone rearrangement

    Get PDF
    The efficient generation of novel, N-linked benzamidines resulting from a regiospecific rearrangement of quinazolinones is described. This methodology study explored reaction parameters including the effect of changing solvent and temperature, as well as varying electronic substituents on the structural core. The transformation was extensively optimized in terms of reaction conditions and scope, resulting in a protocol that consistently affords diversely functionalized amidines in high yield. The process permits regional structural derivatization that was previously inaccessible, and the multistep process was also reduced to a telescoped, five-step sequence that efficiently affords pharmacologically unique (E)-benzamidoamidines from N-BOC protected γ- and δ-amino acids

    Fire and the relative roles of weather, climate and landscape characteristics in the Great Lakes-St. Lawrence forest of Canada

    Get PDF
    Question: In deciduous-dominated forest landscapes, what are the relative roles of fire weather, climate, human and biophysical landscape characteristics for explaining variation in large fire occurrence and area burned? Location: The Great Lakes-St. Lawrence forest of Canada. Methods: We characterized the recent (1959-1999) regime of large (≥ 200 ha) fires in 26 deciduous-dominated landscapes and analysed these data in an information-theoretic framework to compare six hypotheses that related fire occurrence and area burned to fire weather severity, climate normals, population and road densities, and enduring landscape characteristics such as surficial deposits and large lakes. Results: 392 large fires burned 833 698 ha during the study period, annually burning on average 0.07% ± 0.42% of forested area in each landscape. Fire activity was strongly seasonal, with most fires and area burned occurring in May and June. A combination of antecedent-winter precipitation, fire season precipitation deficit/surplus and percent of landscape covered by well-drained surficial deposits best explained fire occurrence and area burned. Fire occurrence varied only as a function of fire weather and climate variables, whereas area burned was also explained by percent cover of aspen and pine stands, human population density and two enduring characteristics: percent cover of large water bodies and glaciofluvial deposits. Conclusion: Understanding the relative role of these variables may help design adaptation strategies for forecasted increases in fire weather severity by allowing (1) prioritization of landscapes according to enduring characteristics and (2) management of their composition so that substantially increased fire activity would be necessary to transform landscape structure and composition

    Optimization and Evaluation of Antiparasitic Benzamidobenzoic Acids as Inhibitors of Kinetoplastid Hexokinase 1

    Get PDF
    Kinetoplastid-based infections are neglected diseases that represent a significant human health issue. Chemotherapeutic options are limited due to toxicity, parasite susceptibility, and poor patient compliance. In response, we studied a molecular-target-directed approach involving intervention of hexokinase activity—a pivotal enzyme in parasite metabolism. A benzamidobenzoic acid hit with modest biochemical inhibition of Trypanosoma brucei hexokinase 1 (TbHK1, IC50=9.1 μm), low mammalian cytotoxicity (IMR90 cells, EC50>25 μm), and no appreciable activity on whole bloodstream-form (BSF) parasites was optimized to afford a probe with improved TbHK1 potency and, significantly, efficacy against whole BSF parasites (TbHK1, IC50=0.28 μm; BSF, ED50=1.9 μm). Compounds in this series also inhibited the hexokinase enzyme from Leishmania major (LmHK1), albeit with less potency than toward TbHK1, suggesting that inhibition of the glycolytic pathway may be a promising opportunity to target multiple disease-causing trypanosomatid protozoa

    Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

    Get PDF
    Atmospheric parameters, such as pressure (P), temperature (T) and density, affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of pressure and density. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle Physic

    The exposure of the hybrid detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The "hybrid" detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic

    Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    Get PDF
    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{6×10196\times 10^{19}eV}. The anisotropy was measured by the fraction of arrival directions that are less than 3.13.1^\circ from the position of an active galactic nucleus within 75 Mpc (using the V\'eron-Cetty and V\'eron 12th12^{\rm th} catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (386+7)(38^{+7}_{-6})%, compared with 2121% expected for isotropic cosmic rays. This is down from the early estimate of (6913+11)(69^{+11}_{-13})%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201

    The Fluorescence Detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics Research Section
    corecore