467 research outputs found

    CO2 exchange and carbon balance in two grassland sites on eutrophic drained peat soils.

    Get PDF
    In this study we investigated the role of intensive and extensive dairy farm practices on CO<sub>2</sub> exchange and the carbon balance of peatlands by means of eddy covariance (EC) measurements. Year long EC measurements were made in two adjacent farm sites on peat soil in the western part of the Netherlands. One site (Stein) is a new meadow bird reserve and is managed predominantly by mowing in June and August. The second site (Oukoop) is an intensive dairy farm. Maximum photosynthetic uptake of the grass sward (range 2 to 34 mu mol CO<sub>2</sub> m(-2) s(-1)) showed a close and similar linear relationship with Leaf Area Index (LAI; range 1 to 5) except in maturing hay meadows, where maximum photosynthetic uptake did not increase further. Apparent quantum yield varied between 0.02 and 0.08 (mean 0.045) mu mol CO<sub>2</sub> mu mol(-1) photons at both sites and was significantly correlated with LAI during the growth season. Ecosystem Respiration at 10 degrees C (R-10) calculated from the year round data set was 3.35 mu mol CO<sub>2</sub> m(-2) s(-1) at Stein and 3.69 mu mol CO<sub>2</sub> m(-2) s(-1) at Oukoop. Both sites were a source of carbon in winter and a sink during summer with net ecosystem exchange varying between 50 to 100 mmol CO<sub>2</sub> m(-2) d(-1) in winter to below -400 mmol CO<sub>2</sub> m(-2) d(-1) in summer. Periodically, both sites became a source after mowing. Net annual ecosystem exchange (NEE) for Stein was -5.7 g C m(-2) a(-1) and for Oukoop 133.9 g C m(-2) a(-1). When biomass removal, manure applications and estimates of methane emissions ware taken into account, both eutrophic peat meadows are a strong source for C around 420 g C m(-2) a(-1)

    Selective Molecular Sieving through Porous Graphene

    Full text link
    Membranes act as selective barriers and play an important role in processes such as cellular compartmentalization and industrial-scale chemical and gas purification. The ideal membrane should be as thin as possible to maximize flux, mechanically robust to prevent fracture, and have well-defined pore sizes to increase selectivity. Graphene is an excellent starting point for developing size selective membranes because of its atomic thickness, high mechanical strength, relative inertness, and impermeability to all standard gases. However, pores that can exclude larger molecules, but allow smaller molecules to pass through have to be introduced into the material. Here we show UV-induced oxidative etching can create pores in micrometre-sized graphene membranes and the resulting membranes used as molecular sieves. A pressurized blister test and mechanical resonance is used to measure the transport of a variety of gases (H2, CO2, Ar, N2, CH4, and SF6) through the pores. The experimentally measured leak rates, separation factors, and Raman spectrum agree well with models based on effusion through a small number of angstrom-sized pores.Comment: to appear in Nature Nanotechnolog

    Molecular spintronics: Coherent spin transfer in coupled quantum dots

    Full text link
    Time-resolved Faraday rotation has recently demonstrated coherent transfer of electron spin between quantum dots coupled by conjugated molecules. Using a transfer Hamiltonian ansatz for the coupled quantum dots, we calculate the Faraday rotation signal as a function of the probe frequency in a pump-probe setup using neutral quantum dots. Additionally, we study the signal of one spin-polarized excess electron in the coupled dots. We show that, in both cases, the Faraday rotation angle is determined by the spin transfer probabilities and the Heisenberg spin exchange energy. By comparison of our results with experimental data, we find that the transfer matrix element for electrons in the conduction band is of order 0.08 eV and the spin transfer probabilities are of order 10%.Comment: 13 pages, 6 figures; minor change

    Saponin-based adjuvants induce cross-presentation in dendritic cells by intracellular lipid body formation

    Get PDF
    Saponin-based adjuvants (SBAs) are being used in animal and human (cancer) vaccines, as they induce protective cellular immunity. Their adjuvant potency is a factor of inflammasome activation and enhanced antigen cross-presentation by dendritic cells (DCs), but how antigen cross-presentation is induced is not clear. Here we show that SBAs uniquely induce intracellular lipid bodies (LBs) in the CD11b+ DC subset in vitro and in vivo. Using genetic and pharmacological interference in models for vaccination and in situ tumour ablation, we demonstrate that LB induction is causally related to the saponin- dependent increase in cross-presentation and T-cell activation. These findings link adjuvant activity to LB formation, aid the application of SBAs as a cancer vaccine component, and will stimulate development of new adjuvants enhancing T-cell-mediated immunity

    Brain Abnormalities in Patients with Germline Variants in H3F3: Novel Imaging Findings and Neurologic Symptoms Beyond Somatic Variants and Brain Tumors

    Get PDF
    BACKGROUND AND PURPOSE: Pathogenic somatic variants affecting the genes Histone 3 Family 3A and 3B (H3F3) are extensively linked to the process of oncogenesis, in particular related to central nervous system tumors in children. Recently, H3F3 germline missense variants were described as the cause of a novel pediatric neurodevelopmental disorder. We aimed to investigate patterns of brain MR imaging of individuals carrying H3F3 germline variants. MATERIALS AND METHODS: In this retrospective study, we included individuals with proved H3F3 causative genetic variants and available brain MR imaging scans. Clinical and demographic data were retrieved from available medical records. Molecular genetic testing results were classified using the American College of Medical Genetics criteria for variant curation. Brain MR imaging abnormalities were analyzed according to their location, signal intensity, and associated clinical symptoms. Numeric variables were described according to their distribution, with median and interquartile range. RESULTS: Eighteen individuals (10 males, 56%) with H3F3 germline variants were included. Thirteen of 18 individuals (72%) presented with a small posterior fossa. Six individuals (33%) presented with reduced size and an internal rotational appearance of the heads of the caudate nuclei along with an enlarged and squared appearance of the frontal horns of the lateral ventricles. Five individuals (28%) presented with dysgenesis of the splenium of the corpus callosum. Cortical developmental abnormalities were noted in 8 individuals (44%), with dysgyria and hypoplastic temporal poles being the most frequent presentation. CONCLUSIONS: Imaging phenotypes in germline H3F3-affected individuals are related to brain features, including a small posterior fossa as well as dysgenesis of the corpus callosum, cortical developmental abnormalities, and deformity of lateral ventricles

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Relaxin, a pleiotropic vasodilator for the treatment of heart failure

    Get PDF
    Relaxin is a naturally occurring peptide hormone that plays a central role in the hemodynamic and renovascular adaptive changes that occur during pregnancy. Triggering similar changes could potentially be beneficial in the treatment of patients with heart failure. The effects of relaxin include the production of nitric oxide, inhibition of endothelin, inhibition of angiotensin II, production of VEGF, and production of matrix metalloproteinases. These effects lead to systemic and renal vasodilation, increased arterial compliance, and other vascular changes. The recognition of this has led to the study of relaxin for the treatment of heart failure. An initial pilot study has shown favorable hemodynamic effects in patients with heart failure, including reduction in ventricular filling pressures and increased cardiac output. The ongoing RELAX-AHF clinical program is designed to evaluate the effects of relaxin on the symptoms and outcomes in a large group of patients admitted to hospital for acute heart failure. This review will summarize both the biology of relaxin and the data supporting its potential efficacy in human heart failure

    Haemodynamic effects of plasma-expansion with hyperoncotic albumin in cirrhotic patients with renal failure: a prospective interventional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with advanced cirrhosis of the liver typically display circulatory disturbance. Haemodynamic management may be critical for avoiding and treating functional renal failure in such patients. This study investigated the effects of plasma expansion with hyperoncotic albumin solution and the role of static haemodynamic parameters in predicting volume responsiveness in patients with advanced cirrhosis.</p> <p>Methods</p> <p>Patients with advanced cirrhosis (Child B and C) of the liver receiving albumin substitution because of renal compromise were studied using trans-pulmonary thermodilution. Paired measurements before and after two infusions of 200 ml of 20% albumin per patient were recorded and standard haemodynamic parameters such as central venous pressure (CVP), mean arterial pressure (MAP), systemic vascular resistance index (SVRI), cardiac index (CI) and derived variables were assessed, including global end-diastolic blood volume index (GEDVI), a parameter that reflects central blood volume</p> <p>Results</p> <p>100 measurements in 50 patients (33 m/17 w; age 56 years (± 8); Child-Pugh-score 12 (± 2), serum creatinine 256 μmol (± 150) were analyzed. Baseline values suggested decreased central blood volumes GEDVI = 675 ml/m<sup>2 </sup>(± 138) despite CVP within the normal range (11 mmHg (± 5). After infusion, GEDVI, CI and CVP increased (682 ml/m<sup>2 </sup>(± 128) vs. 744 ml/m<sup>2 </sup>(± 171), p < 0.001; 4.3 L/min/m<sup>2 </sup>(± 1.1) vs. 4.7 L/min/m<sup>2 </sup>(± 1.1), p < 0.001; 12 mmHg (± 6) vs. 14 mmHg (± 6), p < 0.001 respectively) and systemic vascular resistance decreased (1760 dyn s/cm<sup>5</sup>/m<sup>2 </sup>(± 1144) vs. 1490 dyn s/cm<sup>5</sup>/m<sup>2 </sup>(± 837); p < 0.001). Changes in GEDVI, but not CVP, correlated with changes in CI (r<sup>2 </sup>= 0.51; p < 0.001). To assess the value of static haemodynamic parameters at baseline in predicting an increase in CI of 10%, receiver-operating-characteristic curves were constructed. The areas under the curve were 0.766 (p < 0.001) for SVRI, 0.723 (p < 0.001) for CI, 0.652 (p = 0.010) for CVP and 0.616 (p = 0.050) for GEDVI.</p> <p>Conclusion</p> <p>In a substantial proportion of patients with advanced cirrhosis, plasma expansion results in an increase in central blood volume. GEDVI but not CVP behaves as an indicator of cardiac preload, whereas high baseline SVRI is predictive of fluid responsiveness.</p

    Renal HIV Expression Is Unaffected by Serum LPS Levels in an HIV Transgenic Mouse Model of LPS Induced Kidney Injury

    Get PDF
    Acute kidney injury (AKI) is associated with increased rates of mortality. For unknown reasons, HIV infected individuals have a higher risk of AKI than uninfected persons. We tested our hypothesis that increased circulating LPS increases renal expression of HIV and that HIV transgenic (Tg26) mice have increased susceptibility to AKI. Tg26 mice harbor an HIV transgene encoding all HIV genes except gag and pol, and develop a phenotype analogous to HIVAN. Mice were used at 4–6 weeks of age before the onset of gross renal disease. Mice were injected i.p. with LPS or sterile saline. Renal function, tubular injury, cytokine expression, and HIV transcription were evaluated in Tg26 and wild type (WT) mice. LPS injection induced a median 60.1-fold increase in HIV expression in spleen but no change in kidney. There was no significant difference in renal function, cytokine expression, or tubular injury scores at baseline or 24 hours after LPS injection. HIV transcription was also analyzed in vitro using a human renal tubular epithelial cell (RTEC) line. HIV transcription increased minimally in human RTEC, by 1.47 fold, 48 hours after LPS exposure. We conclude that Tg26 mice do not increase HIV expression or have increased susceptibility to LPS induced AKI. The increased risk of AKI in HIV infected patients is not mediated via increased renal expression of HIV in the setting of sepsis. Moreover, renal regulation of HIV transcription is different to that in the spleen

    Aberrant Water Homeostasis Detected by Stable Isotope Analysis

    Get PDF
    While isotopes are frequently used as tracers in investigations of disease physiology (i.e., 14C labeled glucose), few studies have examined the impact that disease, and disease-related alterations in metabolism, may have on stable isotope ratios at natural abundance levels. The isotopic composition of body water is heavily influenced by water metabolism and dietary patterns and may provide a platform for disease detection. By utilizing a model of streptozotocin (STZ)-induced diabetes as an index case of aberrant water homeostasis, we demonstrate that untreated diabetes mellitus results in distinct combinations, or signatures, of the hydrogen (δ2H) and oxygen (δ18O) isotope ratios in body water. Additionally, we show that the δ2H and δ18O values of body water are correlated with increased water flux, suggesting altered blood osmolality, due to hyperglycemia, as the mechanism behind this correlation. Further, we present a mathematical model describing the impact of water flux on the isotopic composition of body water and compare model predicted values with actual values. These data highlight the importance of factors such as water flux and energy expenditure on predictive models of body water and additionally provide a framework for using naturally occurring stable isotope ratios to monitor diseases that impact water homeostasis
    corecore