10 research outputs found

    In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma

    Get PDF
    CXCR4 is a G-protein-coupled receptor that mediates recruitment of blood cells toward its ligand SDF-1. In cancer, high CXCR4 expression is frequently associated with tumor dissemination and poor prognosis. We evaluated the novel CXCR4 probe [(68)Ga]Pentixafor for in vivo mapping of CXCR4 expression density in mice xenografted with human CXCR4-positive MM cell lines and patients with advanced MM by means of positron emission tomography (PET). [(68)Ga]Pentixafor PET provided images with excellent specificity and contrast. In 10 of 14 patients with advanced MM [(68)Ga]Pentixafor PET/CT scans revealed MM manifestations, whereas only nine of 14 standard [(18)F]fluorodeoxyglucose PET/CT scans were rated visually positive. Assessment of blood counts and standard CD34(+) flow cytometry did not reveal significant blood count changes associated with tracer application. Based on these highly encouraging data on clinical PET imaging of CXCR4 expression in a cohort of MM patients, we conclude that [(68)Ga]Pentixafor PET opens a broad field for clinical investigations on CXCR4 expression and for CXCR4-directed therapeutic approaches in MM and other diseases

    Radiation-induced Activation of Nuclear Factor-κB Involves Selective Degradation of Plasma Membrane-associated IκBα

    No full text
    In contrast to nuclear factor-κB (NF-κB) activation by tumor necrosis factor-α (TNF-α), the specific processes involved in the activation of this transcription factor by ionizing radiation (IR) have not been completely defined. According to the classical paradigm, a critical event in NF-κB activation is the degradation of IκBα. Data presented herein show that, in contrast to treatment with TNF-α, IR-induced NF-κB activation was not accompanied by degradation of IκBα in the U251 glioblastoma cell line as determined in whole cell lysates. However, treatment with the proteosome inhibitor MG-132 inhibited NF-κB activation induced by IR, suggesting that IκBα degradation was a critical event in this process. To reconcile these results, U251 cell lysates were separated into soluble and insoluble fractions and IκBα levels evaluated. Although IκBα was found in both subcellular fractions, treatment with IR resulted in the degradation of IκBα only in the insoluble fraction. Further subcellular fractionation suggested that the IR-sensitive, insoluble pool of IκBα was associated with the plasma membrane. These data suggest that the subcellular location of IκBα is a critical determinant in IR-induced NF-κB activation

    Bench to bedside molecular functional imaging in translational cancer medicine:to image or to imagine?

    No full text

    Medical therapy for Crohn’s disease

    No full text

    The Treatment of Ankylosing Spondylitis and Psoriatic Arthritis with Etanercept: A Comprehensive Review

    No full text

    Bench to bedside molecular functional imaging in translational cancer medicine: to image or to imagine?

    No full text
    corecore