35 research outputs found

    Epigenetic Mechanisms Regulate Stem Cell Expressed Genes Pou5f1 and Gfra1 in a Male Germ Cell Line

    Get PDF
    Male fertility is declining and an underlying cause may be due to environment-epigenetic interactions in developing sperm, yet nothing is known of how the epigenome controls gene expression in sperm development. Histone methylation and acetylation are dynamically regulated in spermatogenesis and are sensitive to the environment. Our objectives were to determine how histone H3 methylation and acetylation contribute to the regulation of key genes in spermatogenesis. A germ cell line, GC-1, was exposed to either the control, or the chromatin modifying drugs tranylcypromine (T), an inhibitor of the histone H3 demethylase KDM1 (lysine specific demethylase 1), or trichostatin (TSA), an inhibitor of histone deacetylases, (HDAC). Quantitative PCR (qPCR) was used to identify genes that were sensitive to treatment. As a control for specificity the Myod1 (myogenic differentiation 1) gene was analyzed. Chromatin immunoprecipitation (ChIP) followed by qPCR was used to measure histone H3 methylation and acetylation at the promoters of target genes and the control, Myod1. Remarkably, the chromatin modifying treatment specifically induced the expression of spermatogonia expressed genes Pou5f1 and Gfra1. ChIP-qPCR revealed that induction of gene expression was associated with a gain in gene activating histone H3 methylation and acetylation in Pou5f1 and Gfra1 promoters, whereas CpG DNA methylation was not affected. Our data implicate a critical role for histone H3 methylation and acetylation in the regulation of genes expressed by spermatogonia – here, predominantly mediated by HDAC-containing protein complexes

    In Vitro Differentiation of Embryonic and Adult Stem Cells into Hepatocytes: State of the Art

    Get PDF
    Stem cells are a unique source of self-renewing cells within the human body. Before the end of the last millennium, adult stem cells, in contrast to their embryonic counterparts, were considered to be lineage-restricted cells or incapable of crossing lineage boundaries. However, the unique breakthrough of muscle and liver regeneration by adult bone marrow stem cells at the end of the 1990s ended this long-standing paradigm. Since then, the number of articles reporting the existence of multipotent stem cells in skin, neuronal tissue, adipose tissue, and bone marrow has escalated, giving rise, both in vivo and in vitro, to cell types other than their tissue of origin. The phenomenon of fate reprogrammation and phenotypic diversification remains, though, an enigmatic and rare process. Understanding how to control both proliferation and differentiation of stem cells and their progeny is a challenge in many fields, going from preclinical drug discovery and development to clinical therapy. In this review, we focus on current strategies to differentiate embryonic, mesenchymal(-like), and liver stem/progenitor cells into hepatocytes in vitro. Special attention is paid to intracellular and extracellular signaling, genetic modification, and cell-cell and cell-matrix interactions. In addition, some recommendations are proposed to standardize, optimize, and enrich the in vitro production of hepatocyte-like cells out of stem/progenitor cells

    Rational drug repurposing using sscMap analysis in a HOX-TALE model of leukemia

    Get PDF
    Drug discovery and development are often hampered by lack of target identification and clinical tractability. Repurposing of approved drugs to life-threatening diseases such as leukemia is emerging as a promising alternative approach. Connectivity mapping systems link approved drugs with disease-related gene signatures. Relevant preclinical models provide essential tools for system validation and proof-of-concept studies. Herein we describe procedures aimed at generating disease-based gene signatures and applying them to established cross-referencing databases of potential candidate drugs. As a proof of principle, we present the identification of Entinostat as a candidate drug for the treatment of HOX TALE-related leukemia

    Analysis of murine hematopoietic and neural stem cells´ potential of differentiation after modification of their gene expression

    No full text
    In der vorliegenden Arbeit wurde das Differenzierungspotential muriner hämatopoetischer und neuraler Stammzellen nach Modifikation ihrer Genexpression untersucht. Zur Veränderung der Genexpression wurden für die beiden adulten Stammzelltypen zwei unterschiedliche experimentelle Ansätze gewählt: In hämatopoetischen Stammzellen wurden molekulare Regulatoren der Hämatopoese durch retroviral vermittelten Gentransfer überexprimiert und anschließend ihr in vitro Verhalten und in vivo in Maustransplantationsmodellen ihre Rekonstitutionsfähigkeit untersucht. Neurale Stammzellen wurden gleichzeitig mit den Chromatin-modifizierenden Substanzen Trichostatin A (TSA) und 5-Aza-2´-desoxycytidin (AzadC) behandelt, im Anschluß ihre Sensitivität gegenüber der Behandlung in vitro bestimmt und ihr hämatopoetisches Entwicklungspotential in vivo analysiert. In hämatopoetischen Stammzellen wurde der Transkriptionsfaktor HOXB4, die hämatopoetische Vorläuferkinase 1 (HPK1) oder eine Kinase-inaktive Mutante der HPK1 (HPK1M46) durch retrovirale Transduktion überexprimiert. Der Transfer wildtypischer HPK1 oder HPK1M46 Gene in Knochenmarkzellen hatte in vitro keinen meßbaren Einfluß auf die Proliferation und Anzahl primitiver Vorläuferzellen, was auch nach Expression verschiedener Proteinmengen beobachtet wurde. Das Repopulationsverhalten hämatopoetischer Stammzellen, die mit wildtypischer HPK1 transduziert wurden, war vergleichbar mit dem kontrolltransduzierter Stammzellen. Nach HPK1M46 Transduktion zeigten hämatopoetische Stammzellen in vivo ein reduziertes Langzeitrepopulationsverhalten und Knochenmarkzellen ex vivo ein eingeschränktes Koloniebildungspotential. Sowohl mit wildtypischer HPK1 als auch mit HPK1M46 transduzierte hämatopoetische Stammzellen wiesen ein normales Multilinienbesiedlungspotential auf. Nach Transduktion von Knochenmarkzellen mit HOXB4, einem wichtigen Regulator der Selbsterneuerung hämatopoetischer Stammzellen, konnten diese in vitro expandiert werden, ohne daß sie, wie dies bei kontrolltransduzierten Knochenmarkzellen auftrat, phänotypisch Differenzierungsmarker ausbildeten. Nach HOXB4 Transduktion akkumulierte eine homogene, Mac-1niedrig exprimierende Zellpopulation im Gegensatz zu einer Mac-1hoch, Gr-1 sowie c-kit positiven Population, die sich in den Kontrollkulturen entwickelte. Auf mRNS Ebene wurden nur in den Kontrollkulturen Transkripte hochreguliert, die für differenzierende Zellen spezifisch sind, wie z. B. Zyklin D1 während myeloider Differenzierung. Die Überexpression von HOXB4 ermöglichte eine konstante Proliferationsrate und hatte auf das Verhältnis von asymmetrischen zu symmetrischen Zellteilungen jedoch keinen Einfluß. Entsprechend blieb das Expressionsmuster an Zyklinen, Zyklin-abhängigen Kinasen und Mitgliedern des Transkriptionsaktivators AP-1 in HOXB4 transduzierten Knochenmarkzellen über den beobachteten Zeitraum konstant. Durch die Überexpression von HOXB4 kann somit in kultivierten Knochenmarkzellen in vitro eine stabile Proliferationsrate induziert und parallel eine fortschreitende Differenzierung der Knochenmarkkultur aufgehalten oder zumindest verzögert werden. Sowohl wildtypische als auch bcl-2 transgene neurale Stammzellen, die mit den Epigenotyp-verändernden Substanzen TSA und AzadC behandelt wurden, zeigten nach Transplantation in bestrahlte adulte Rezipienten hämatopoetisches Entwicklungspotential, das unbehandelte neurale Stammzellen nicht aufwiesen. Die Frequenz chimärer Tiere konnte durch Verwendung bcl-2 transgener neuraler Stammzellen erhöht werden und bereits in vitro wiesen wildtypische und bcl-2 transgene neurale Stammzellen unterschiedliche Sensitivität gegenüber der TSA/AzadC Behandlung auf. Diese von behandelten neuralen Stammzellen vermittelte Rekonstitution des hämatopoetischen Systems war langanhaltend und fand sowohl in der myeloiden als auch in der lymphoiden Linie statt. Eine erfolgreiche hämatopoetische Besiedlung war auch nach Transplantation klonaler neuraler Stammzellen zu beobachten, so daß eine Verunreinigung mit hämatopoetischen Zellen als Ursache der Rekonstitution ausgeschlossen werden konnte. Die beobachtete Generierung der morphologisch und phänotypisch intakten hämatopoetischen Zellen aus neuralen Zellen war nicht das Ergebnis einer Zellfusion von Rezipientenzellen mit injizierten Donorzellen. Denn die hämatopoetischen Donorzellen trugen einen normalen 2n Karyotyp und wiesen keine Heterokaryons auf, die für Fusionen charakteristisch wären. Somit ist es möglich, durch die Veränderung des Epigenotyps neuraler Stammzellen gefolgt von einer Transplantation in eine hämatopoetische Mikroumgebung eine Transdifferenzierung neuraler in hämatopoetische Zellen zu induzieren.This PhD thesis addressed the capacity of murine hematopoietic and neural stem cells to differentiate after modifying their gene expression pattern. Two different experimental approaches were chosen and applied to both systems of adult stem cells: By retroviral mediated gene transfer molecular regulators of hematopoiesis were overexpressed in hematopoietic stem cells and the behaviour of the genetically modified hematopoietic stem cells was analyzed in vitro and using mouse transplantatioin models their reconstitution capacity in vivo was tested. Neural stem cells were simultaneously treated with the two chromatin-modifying substances trichostatin A (TSA) and 5-aza-2´-deoxycytidine (AzadC), in vitro their TSA/AzadC sensitivity and in vivo their hematopoietic differentiation potential was studied. The transcriptionfactor HOXB4, the hematopoietic progenitor kinase 1 (HPK1) or a kinase-dead mutant of HPK1 (HPK1M46) were overexpressed in hematopoietic stem cells by retroviral transduction. Retrovirally transferred wildtype HPK1 or HPK1M46 in bone marrow cells showed no detectable influence on proliferation or numbers of primitive progenitors in vitro even when varying protein amounts were expressed. The repopulation capacity of hematopoietic stem cells transduced with wildtype HPK1 was comparable to control transduced stem cells. However, HPK1M46 transduced hematopoietic stem cells showed in vivo a reduced long-term repopulation activity and bone marrow cells displayed a limited colony forming potential in vitro. Wildtype HPK1 as well as HPK1M46 transduced hematopoietic stem cells possessed a normal multi-lineage repopulation potential. Although differentiation was observable in control transduced bone marrow cells transduction of bone marrow cells with HOXB4, an important regulator of self-renewal of hematopoietic stem cells, permitted in vitro expansion of bone marrow cells without expression of phenotypical differentiation markers. After HOXB4 transduction a homogenous Mac-1low expressing cell population accumulated in contrast to a Mac-1high, Gr-1 and c-kit positive population developing in control cultures. At mRNA level transcripts specific for differentiating cells like cyclin D1 during myeloid differentiation were upregulated only in control cells. Overexpression of HOXB4 enabled a constant cell proliferation rate but showed no influence on the ratio of symmetric to asymmetric cell divisions. Likewise the expression pattern of cyclins, cyclin-dependent kinases and members of the AP-1 transcription activator complex remained constant in HOXB4-transduced bone marrow cells over time. Thus by overexpressing HOXB4, a sustained and stable proliferation rate can be induced in cultured bone marrow cells in vitro and ongoing differentiation of the bone marrow culture can be blocked or at least delayed. After treatment with the epigenotype-modifying substances TSA and AzadC wildtype as well as bcl-2 transgenic neural stem cells revealed hematopoietic differentiation potential after transplantation into irradiated adult recipients which was not shown by untreated neural stem cells. The frequency of chimeric mice could be enhanced by using bcl-2 transgenic neural stem cells and already in vitro wildtype and bcl-2 transgenic neural stem cells revealed different TSA/AzadC sensitivity. This reconstitution of the hematopoietic system by treated neural stem cells was long lasting and occurred in the lymphoid as well as in the myeloid lineage. Successful hematopoietic reconstitution was also observable after transplanting clonal neural stem cells thereby excluding residual hematopoietic cells in the neural stem cell preparation to account for the reconstitution of the hematopoietic system. The generation of morphological and phenotypical intact hematopoietic cells from neural cells was not the consequence of cell fusion of recipient cells with injected donor cells because of the normal 2n genotype and the absence of heterokaryons which are known to be characteristic for fusion events. In view of that it is possible by modifying the epigenotype of neural stem cells followed by transplantation into a hematopoietic microenvironment to induce transdifferentiation of neural cells into hematopoietic cells

    Liver disintegration in the mouse embryo by deficiency in RNA editing enzyme ADAR1

    No full text
    ADAR1 (adenosine deaminase acting on RNA-1) is widely expressed in mammals, but its biological role is unknown. We show here by gene targeting that ADAR1 selectively edits in vivo two of five closely spaced adenosines in the serotonin 5-hydroxytryptamine subtype 2C receptor pre-mRNA of nervous tissue; and hence, site-selective adenosine-to-inosine editing is indeed a function of ADAR1. Remarkably, homozygosity for two different null alleles of ADAR1 caused a consistent embryonic phenotype appearing early at embryonic day 11 and leading to death between embryonic days 11.5 and 12.5. This phenotype manifests a rapidly disintegrating liver structure, along with severe defects in definitive hematopoiesis, encompassing both erythroid and myeloid/granuloid progenitors as well as spleen colony-forming activity from the aorta-gonad-mesonephros region and fetal liver. Probably as a consequence of these developmental impairments, ADAR1-deficient embryonic stem cells failed to contribute to liver, bone marrow, spleen, thymus, and blood in adult chimeric mice. Thus, ADAR1 subserves critical steps in developing non-nervous tissue, which are likely to include transcript editing

    Совершенствование работ на агрегатном участке СТО Автосервис «ДоК-Авто» г. Томск

    No full text
    В первой и второй частях приведена характеристика предприятия и обоснование выбора темы выпускной работы. В части "Расчеты и аналитика" представлены необходимые расчеты для совершенствования ремонта на агрегатном участке СТО автосервис "Док-авто", г. Томск. В части "Результаты исследования" выпускной квалификационной работы представлен стенд для испытания гидроусилителей рулевого управления. Выполнены необходимые конструкторские расчеты. В разделе "Финансовый менеджмент, ресурсосбережение и ресурсоэффективность" рассчитаны затраты на проведение технического обслуживания и текущего ремонта на предприятии. В разделе "Социальная ответственность" проведен расчет искусственного освещения.In the first and second parts, the characteristics of the enterprise and the rationale for choosing the theme of the final work are given. In the part "Calculations and Analytics" the necessary calculations are presented for improving the repair in the aggregate section of the service station of the auto service "Dock-auto", Tomsk. In the part "Results of the study" of the final qualifying work, a booster test bench is presented. The necessary design calculations have been completed. In the section "Financial Management, Resource Saving and Resource Efficiency", the costs for maintenance and maintenance at the enterprise were calculated. In the section "Social Responsibility" a calculation of artificial lighting was carried out

    Liver disintegration in the mouse embryo by deficiency in RNA editing enzyme ADAR1

    No full text
    Adenosine deaminase acting on RNA 1 (ADAR1) is widely expressed in the mammal, but its biological role is unknown. We show here by gene targeting that ADAR1 selectively edits in vivo two of five close−spaced adenosines in serotonin 5−HT2C receptor pre−mRNA of nervous tissue and hence, site−selective A−to−I editing is indeed a function of ADAR1. Remarkably, homozygosity for two different null alleles of ADAR1 caused a consistent embryonic phenotype appearing at early E11 and leading to death between E11.5 and E12.5. This phenotype manifests a rapidly disintegrating liver structure, along with severe defects in definitive hematopoiesis, which encompass both erythroid and myeloid−granuloid progenitors as well as spleen colony−forming activity from aorta−gonad−mesonephros and fetal liver. Probably as a consequence of these developmental impairments, ADAR1−deficient embryonic stem cells failed to contribute to liver, bone marrow, spleen, thymus and blood in adult chimeric mice. Thus, ADAR1 subserves critical steps in developing non−nervous tissue, which are likely to include transcript editing
    corecore