154 research outputs found

    Social integration of people with a migration background in Swiss sport clubs: A cross-level analysis

    Get PDF
    Sport clubs are considered an ideal setting for the social integration of people with a migration background (PMB). However, they can also be a place of social closure practices, where assimilative ideas and ethnic boundaries are present. Besides the individual characteristics of the members, adequate club organizational structures are relevant for preventing social closure and facilitating social integration. Thus, the role of organizational structures for social integration might differ between natives and PMB. Based on data from 42 Swiss sport clubs and 780 sport club members, with and without a migration background, we analyzed individual (migration background, membership biography) and structural factors (situational, club goals, club culture) using multilevel models and tested cross-level interactions between structural variables and migration background. The results reveal that membership biography (e.g. membership duration and volunteering) and migration background are relevant for social integration. The estimated cross-level effects reveal that, unlike for natives and second-generation PMB, structural conditions are especially relevant for first-generation PMB. For example, social integration increases with a higher proportion of PMB in the club or a less assimilative club culture

    Social Integration of People With a Migration Background in European Sports Clubs

    Get PDF
    Policy makers often ascribe sports clubs an important societal role, as they can encourage the integration of people with amigration background. Questions then arise as to the extent that members with a migration background are integrated in sportsclubs and what the factors are that play a role in this integration. The data for this research are drawn from a comparative study of10 European countries. The analyses take a multidimensional approach to social integration and differentiate between thedimensions of understanding/acceptance, interaction, and identification. The results show that members with a migrationbackground are relatively well integrated, but less so than other club members. There is a positive association between socialintegration and the volunteering, participation in competitions, long-term membership, and sports activities in teams

    Investigating avian competition for surface water in an arid zone bioregion

    Get PDF
    Interference competition has the potential to alter avian assemblages at long-lasting arid zone waterholes, particularly in a warming world, as more potentially aggressive species frequent these sites to drink. We used camera traps and observational surveys to investigate interference competition between terrestrial avian species at six long-lasting waterholes across three sampling seasons (two summers and one winter) within the MacDonnell Ranges Bioregion in central Australia. The proportion of individuals drinking for each of four dietary classes (granivores, nectarivores, omnivores, and insectivores) was modelled in relation to their abundance in the immediate waterhole habitat, which informed the potential for competition in each season. We then used the temporal overlap estimators to quantify the degree of competition between species at waterholes with species grouped into families (Meliphagidae, Ptilonorhynchidae, Estrildidae, and Rhipiduridae). We found the proportion of individuals drinking at waterholes was greatest during hot and dry periods, suggesting the potential for interference competition is greatest during these times. This was particularly the case for nectarivores where, in hot and dry conditions, the proportion of drinking individuals increased significantly as their abundance also increased in the waterhole habitat. We predicted that subordinate species would alter their activity periods to avoid competitive interactions with meliphagids (honeyeaters), however, we found there was a high degree of temporal overlap between all families sampled across all seasons. These results suggest subordinate species are unlikely to be excluded from long-lasting waterholes by potentially aggressive species, such as honeyeaters. However, some species may face trade-offs between foraging and accessing waterholes to stay hydrated as they shift their activity to avoid the hottest parts of the day during the summer months. Under global warming, extended hot and dry periods will likely create conditions where balancing energy and hydration requirements becomes increasingly difficult and results in the loss of body condition.</p

    Social integration of immigrant adolescents and young adults in Swiss sports clubs

    Get PDF
    There are a high proportion of young immigrants in Switzerland as a consequence of past and present migratory movements in Europe. Switzerland is subsequently faced with the task of integrating immigrants into society. Sports clubs foster social integration in a more effective way than other voluntary organizations, and are considered important institutions in this context (Østerlund & Seippel, 2013). However, young immigrants are under represented in sports clubs in comparison with their Swiss counterparts (Lamprecht et al., 2014). The question then arises: What is the extent of social integration by young immigrants participating in sports clubs and what are the club structures that effectively work towards integration? Our study focuses on relevant aspects of social integration in sports clubs at an individual and organizational level. Based on a multi-level research design that includes Esser’s (2004) concepts of social action and integration, data was collected via written questionnaire in 20 sports clubs. 346 members (♀ 27 %; aged 16-30, M = 20.3, SD = 3.9) and chair (wo)men were surveyed. Findings reveal a similar quality of integration among immigrant and non-immigrant members in terms of identity, participation in general meetings and existing knowledge within the club; but members differ in their depth of friendships. The clubs - with a high respectively low immigrant member share - have similar assimilative or pluralistic attitudes (aside from the expectation of speaking German) and goals such as support of integration, openness for all. Esser, H. (2004). Does the “New” Immigration Require a “New” Theory of Intergenerational Integration? International Migration Report (38) 3, 1126-1159. Lamprecht, M., Fischer, A., & Stamm, H.P. (2014). Sport Schweiz 2014. Magglingen: BASPO. Østerlund, K. & Seippel, Ø. (2013). Does membership in civil society organizations foster social integration? The case of Danish voluntary sport organizations. Journal of Civil Society (9) 4, 391-413

    Regenerating Agricultural Landscapes with Perennial Groundcover for Intensive Crop Production

    Get PDF
    The Midwestern U.S. landscape is one of the most highly altered and intensively managed ecosystems in the country. The predominant crops grown are maize (Zea mays L.) and soybean [Glycine max (L.) Merr]. They are typically grown as monocrops in a simple yearly rotation or with multiple years of maize (2 to 3) followed by a single year of soybean. This system is highly productive because the crops and management systems have been well adapted to the regional growing conditions through substantial public and private investment. Furthermore, markets and supporting infrastructure are highly developed for both crops. As maize and soybean production have intensified, a number of concerns have arisen due to the unintended environmental impacts on the ecosystem. Many areas across the Midwest are experiencing negative impacts on water quality, soil degradation, and increased flood risk due to changes in regional hydrology. The water quality impacts extend even further downstream. We propose the development of an innovative system for growing maize and soybean with perennial groundcover to recover ecosystem services historically provided naturally by predominantly perennial native plant communities. Reincorporating perennial plants into annual cropping systems has the potential of restoring ecosystem services without negatively impacting grain crop production and offers the prospect of increasing grain crop productivity through improving the biological functioning of the system

    Equilibrium responses of global net primary production and carbon storage to doubled atmospheric carbon dioxide: sensitivity to changes in vegetation nitrogen concentration

    Get PDF
    We ran the terrestrial ecosystem model (TEM) for the globe at 0.5° resolution for atmospheric CO2 concentrations of 340 and 680 parts per million by volume (ppmv) to evaluate global and regional responses of net primary production (NPP) and carbon storage to elevated CO2 for their sensitivity to changes in vegetation nitrogen concentration. At 340 ppmv, TEM estimated global NPP of 49.0 1015 g (Pg) C yr−1 and global total carbon storage of 1701.8 Pg C; the estimate of total carbon storage does not include the carbon content of inert soil organic matter. For the reference simulation in which doubled atmospheric CO2 was accompanied with no change in vegetation nitrogen concentration, global NPP increased 4.1 Pg C yr−1 (8.3%), and global total carbon storage increased 114.2 Pg C. To examine sensitivity in the global responses of NPP and carbon storage to decreases in the nitrogen concentration of vegetation, we compared doubled CO2 responses of the reference TEM to simulations in which the vegetation nitrogen concentration was reduced without influencing decomposition dynamics (“lower N” simulations) and to simulations in which reductions in vegetation nitrogen concentration influence decomposition dynamics (“lower N+D” simulations). We conducted three lower N simulations and three lower N+D simulations in which we reduced the nitrogen concentration of vegetation by 7.5, 15.0, and 22.5%. In the lower N simulations, the response of global NPP to doubled atmospheric CO2 increased approximately 2 Pg C yr−1 for each incremental 7.5% reduction in vegetation nitrogen concentration, and vegetation carbon increased approximately an additional 40 Pg C, and soil carbon increased an additional 30 Pg C, for a total carbon storage increase of approximately 70 Pg C. In the lower N+D simulations, the responses of NPP and vegetation carbon storage were relatively insensitive to differences in the reduction of nitrogen concentration, but soil carbon storage showed a large change. The insensitivity of NPP in the N+D simulations occurred because potential enhancements in NPP associated with reduced vegetation nitrogen concentration were approximately offset by lower nitrogen availability associated with the decomposition dynamics of reduced litter nitrogen concentration. For each 7.5% reduction in vegetation nitrogen concentration, soil carbon increased approximately an additional 60 Pg C, while vegetation carbon storage increased by only approximately 5 Pg C. As the reduction in vegetation nitrogen concentration gets greater in the lower N+D simulations, more of the additional carbon storage tends to become concentrated in the north temperate-boreal region in comparison to the tropics. Other studies with TEM show that elevated CO2 more than offsets the effects of climate change to cause increased carbon storage. The results of this study indicate that carbon storage would be enhanced by the influence of changes in plant nitrogen concentration on carbon assimilation and decomposition rates. Thus changes in vegetation nitrogen concentration may have important implications for the ability of the terrestrial biosphere to mitigate increases in the atmospheric concentration of CO2 and climate changes associated with the increases

    Substrate age and tree islands influence carbon and nitrogen dynamics across a retrogressive semiarid chronosequence

    Get PDF
    The long-term dynamics of carbon (C) and nitrogen (N) in semiarid ecosystems remain poorly understood. We measured pools and fluxes of surface soil C and N, as well as other soil properties, under tree canopies and in intercanopy spaces at four sites that form a volcanic substrate age gradient in semiarid piñon-juniper woodlands of northern Arizona, United States. Clay content and soil water-holding capacity increased consistently with substrate age, but both soil organic C and N increased only up to the 750,000 year site and then declined at the oldest (3,000,000 year) site. Measures of soil C and N flux displayed a similar pattern to total C and N pools. Pools and fluxes of C and N among the three canopy types became more homogeneous with substrate age up to the 750,000 year site, but disparity between tree and intercanopy microsites widened again at the oldest site. The δ15N of both tree leaves and surface soils became progressively more enriched across the substrate age gradient, consistent with a N cycle increasingly dominated by isotope fractionating losses. Our results point to consistencies in patterns of ecosystem development between semiarid and more humid ecosystems and suggest that pedogenic development may be an important factor controlling the spatial distribution of soil resources in semiarid ecosystems. These data should help both unify and broaden current theory of terrestrial ecosystem development

    Altitudinal variation in soil organic carbon stock in coniferous subtropical and broadleaf temperate forests in Garhwal Himalaya

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Himalayan zones, with dense forest vegetation, cover a fifth part of India and store a third part of the country reserves of soil organic carbon (SOC). However, the details of altitudinal distribution of these carbon stocks, which are vulnerable to forest management and climate change impacts, are not well known.</p> <p>Results</p> <p>This article reports the results of measuring the stocks of SOC along altitudinal gradients. The study was carried out in the coniferous subtropical and broadleaf temperate forests of Garhwal Himalaya. The stocks of SOC were found to be decreasing with altitude: from 185.6 to 160.8 t C ha<sup>-1 </sup>and from 141.6 to 124.8 t C ha<sup>-1 </sup>in temperature (<it>Quercus leucotrichophora</it>) and subtropical (<it>Pinus roxburghii</it>) forests, respectively.</p> <p>Conclusion</p> <p>The results of this study lead to conclusion that the ability of soil to stabilize soil organic matter depends negatively on altitude and call for comprehensive theoretical explanation</p

    Soil Respiration in Tibetan Alpine Grasslands: Belowground Biomass and Soil Moisture, but Not Soil Temperature, Best Explain the Large-Scale Patterns

    Get PDF
    The Tibetan Plateau is an essential area to study the potential feedback effects of soils to climate change due to the rapid rise in its air temperature in the past several decades and the large amounts of soil organic carbon (SOC) stocks, particularly in the permafrost. Yet it is one of the most under-investigated regions in soil respiration (Rs) studies. Here, Rs rates were measured at 42 sites in alpine grasslands (including alpine steppes and meadows) along a transect across the Tibetan Plateau during the peak growing season of 2006 and 2007 in order to test whether: (1) belowground biomass (BGB) is most closely related to spatial variation in Rs due to high root biomass density, and (2) soil temperature significantly influences spatial pattern of Rs owing to metabolic limitation from the low temperature in cold, high-altitude ecosystems. The average daily mean Rs of the alpine grasslands at peak growing season was 3.92 µmol CO2 m−2 s−1, ranging from 0.39 to 12.88 µmol CO2 m−2 s−1, with average daily mean Rs of 2.01 and 5.49 µmol CO2 m−2 s−1 for steppes and meadows, respectively. By regression tree analysis, BGB, aboveground biomass (AGB), SOC, soil moisture (SM), and vegetation type were selected out of 15 variables examined, as the factors influencing large-scale variation in Rs. With a structural equation modelling approach, we found only BGB and SM had direct effects on Rs, while other factors indirectly affecting Rs through BGB or SM. Most (80%) of the variation in Rs could be attributed to the difference in BGB among sites. BGB and SM together accounted for the majority (82%) of spatial patterns of Rs. Our results only support the first hypothesis, suggesting that models incorporating BGB and SM can improve Rs estimation at regional scale
    corecore