39 research outputs found

    Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs

    Get PDF
    We report results from searches for anisotropic stochastic gravitational-wave backgrounds using data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. For the first time, we include Virgo data in our analysis and run our search with a new efficient pipeline called {\tt PyStoch} on data folded over one sidereal day. We use gravitational-wave radiometry (broadband and narrow band) to produce sky maps of stochastic gravitational-wave backgrounds and to search for gravitational waves from point sources. A spherical harmonic decomposition method is employed to look for gravitational-wave emission from spatially-extended sources. Neither technique found evidence of gravitational-wave signals. Hence we derive 95\% confidence-level upper limit sky maps on the gravitational-wave energy flux from broadband point sources, ranging from Fα,Θ<(0.013−7.6)×10−8erg cm−2 s−1 Hz−1,F_{\alpha, \Theta} < {\rm (0.013 - 7.6)} \times 10^{-8} {\rm erg \, cm^{-2} \, s^{-1} \, Hz^{-1}}, and on the (normalized) gravitational-wave energy density spectrum from extended sources, ranging from Ωα,Θ<(0.57−9.3)×10−9 sr−1\Omega_{\alpha, \Theta} < {\rm (0.57 - 9.3)} \times 10^{-9} \, {\rm sr^{-1}}, depending on direction (Θ\Theta) and spectral index (α\alpha). These limits improve upon previous limits by factors of 2.9−3.52.9 - 3.5. We also set 95\% confidence level upper limits on the frequency-dependent strain amplitudes of quasimonochromatic gravitational waves coming from three interesting targets, Scorpius X-1, SN 1987A and the Galactic Center, with best upper limits range from h0<(1.7−2.1)×10−25,h_0 < {\rm (1.7-2.1)} \times 10^{-25}, a factor of ≄2.0\geq 2.0 improvement compared to previous stochastic radiometer searches.Comment: 23 Pages, 9 Figure

    Diving below the spin-down limit:constraints on gravitational waves from the energetic young pulsar PSR J0537-6910

    Get PDF
    We present a search for continuous gravitational-wave signals from the young, energetic X-ray pulsar PSR J0537-6910 using data from the second and third observing runs of LIGO and Virgo. The search is enabled by a contemporaneous timing ephemeris obtained using NICER data. The NICER ephemeris has also been extended through 2020 October and includes three new glitches. PSR J0537-6910 has the largest spin-down luminosity of any pulsar and is highly active with regards to glitches. Analyses of its long-term and inter-glitch braking indices provided intriguing evidence that its spin-down energy budget may include gravitational-wave emission from a time-varying mass quadrupole moment. Its 62 Hz rotation frequency also puts its possible gravitational-wave emission in the most sensitive band of LIGO/Virgo detectors. Motivated by these considerations, we search for gravitational-wave emission at both once and twice the rotation frequency. We find no signal, however, and report our upper limits. Assuming a rigidly rotating triaxial star, our constraints reach below the gravitational-wave spin-down limit for this star for the first time by more than a factor of two and limit gravitational waves from the l = m = 2 mode to account for less than 14% of the spin-down energy budget. The fiducial equatorial ellipticity is limited to less than about 3 x 10⁻⁔, which is the third best constraint for any young pulsar

    Observation of Gravitational Waves from Two Neutron Star–Black Hole Coalescences

    Get PDF
    Abstract: We report the observation of gravitational waves from two compact binary coalescences in LIGO’s and Virgo’s third observing run with properties consistent with neutron star–black hole (NSBH) binaries. The two events are named GW200105_162426 and GW200115_042309, abbreviated as GW200105 and GW200115; the first was observed by LIGO Livingston and Virgo and the second by all three LIGO–Virgo detectors. The source of GW200105 has component masses 8.9−1.5+1.2 and 1.9−0.2+0.3M⊙ , whereas the source of GW200115 has component masses 5.7−2.1+1.8 and 1.5−0.3+0.7M⊙ (all measurements quoted at the 90% credible level). The probability that the secondary’s mass is below the maximal mass of a neutron star is 89%–96% and 87%–98%, respectively, for GW200105 and GW200115, with the ranges arising from different astrophysical assumptions. The source luminosity distances are 280−110+110 and 300−100+150Mpc , respectively. The magnitude of the primary spin of GW200105 is less than 0.23 at the 90% credible level, and its orientation is unconstrained. For GW200115, the primary spin has a negative spin projection onto the orbital angular momentum at 88% probability. We are unable to constrain the spin or tidal deformation of the secondary component for either event. We infer an NSBH merger rate density of 45−33+75Gpc−3yr−1 when assuming that GW200105 and GW200115 are representative of the NSBH population or 130−69+112Gpc−3yr−1 under the assumption of a broader distribution of component masses

    All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data

    Get PDF
    We report on an all-sky search for continuous gravitational waves in the frequency band 20-2000 Hz and with a frequency time derivative in the range of [-1.0; +0.1] x 10(-8) Hz/s. Such a signal could be produced by a nearby, spinning and slightly nonaxisymmetric isolated neutron star in our Galaxy. This search uses the LIGO data from the first six months of Advanced LIGO&apos;s and Advanced Virgo&apos;s third observational run, O3. No periodic gravitational wave signals are observed, and 95% confidence-level (C.L.) frequentist upper limits are placed on their strengths. The lowest upper limits on worst-case (linearly polarized) strain amplitude h(0) are similar to 1.7 x 10(-25) near 200 Hz. For a circularly polarized source (most favorable orientation), the lowest upper limits are similar to 6.3 x 10(-26). These strict frequentist upper limits refer to all sky locations and the entire range of frequency derivative values. For a populationaveraged ensemble of sky locations and stellar orientations, the lowest 95% C.L. upper limits on the strain amplitude are similar to 1.4 x 10(-25). These upper limits improve upon our previously published all-sky results, with the greatest improvement (factor of similar to 2) seen at higher frequencies, in part because quantum squeezing has dramatically improved the detector noise level relative to the second observational run, O2. These limits are the most constraining to date over most of the parameter space searched

    Search for Lensing Signatures in the Gravitational-Wave Observations from the First Half of LIGO-Virgo's Third Observing Run

    Get PDF
    none1378siWe search for signatures of gravitational lensing in the gravitational-wave signals from compact binary coalescences detected by Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) and Advanced Virgo during O3a, the first half of their third observing run. We study: (1) the expected rate of lensing at current detector sensitivity and the implications of a non-observation of strong lensing or a stochastic gravitational-wave background on the merger-rate density at high redshift; (2) how the interpretation of individual high-mass events would change if they were found to be lensed; (3) the possibility of multiple images due to strong lensing by galaxies or galaxy clusters; and (4) possible wave-optics effects due to point-mass microlenses. Several pairs of signals in the multiple-image analysis show similar parameters and, in this sense, are nominally consistent with the strong lensing hypothesis. However, taking into account population priors, selection effects, and the prior odds against lensing, these events do not provide sufficient evidence for lensing. Overall, we find no compelling evidence for lensing in the observed gravitational-wave signals from any of these analyses.noneAbbott R.; Abbott T.D.; Abraham S.; Acernese F.; Ackley K.; Adams A.; Adams C.; Adhikari R.X.; Adya V.B.; Affeldt C.; Agarwal D.; Agathos M.; Agatsuma K.; Aggarwal N.; Aguiar O.D.; Aiello L.; Ain A.; Ajith P.; Aleman K.M.; Allen G.; Allocca A.; Altin P.A.; Amato A.; Anand S.; Ananyeva A.; Anderson S.B.; Anderson W.G.; Angelova S.V.; Ansoldi S.; Antelis J.M.; Antier S.; Appert S.; Arai K.; Araya M.C.; Areeda J.S.; Arene M.; Arnaud N.; Aronson S.M.; Arun K.G.; Asali Y.; Ashton G.; Aston S.M.; Astone P.; Aubin F.; Aufmuth P.; Aultoneal K.; Austin C.; Babak S.; Badaracco F.; Bader M.K.M.; Bae S.; Baer A.M.; Bagnasco S.; Bai Y.; Baird J.; Ball M.; Ballardin G.; Ballmer S.W.; Bals M.; Balsamo A.; Baltus G.; Banagiri S.; Bankar D.; Bankar R.S.; Barayoga J.C.; Barbieri C.; Barish B.C.; Barker D.; Barneo P.; Barone F.; Barr B.; Barsotti L.; Barsuglia M.; Barta D.; Bartlett J.; Barton M.A.; Bartos I.; Bassiri R.; Basti A.; Bawaj M.; Bayley J.C.; Baylor A.C.; Bazzan M.; Becsy B.; Bedakihale V.M.; Bejger M.; Belahcene I.; Benedetto V.; Beniwal D.; Benjamin M.G.; Bennett T.F.; Bentley J.D.; Benyaala M.; Bergamin F.; Berger B.K.; Bernuzzi S.; Berry C.P.L.; Bersanetti D.; Bertolini A.; Betzwieser J.; Bhandare R.; Bhandari A.V.; Bhattacharjee D.; Bhaumik S.; Bidler J.; Bilenko I.A.; Billingsley G.; Birney R.; Birnholtz O.; Biscans S.; Bischi M.; Biscoveanu S.; Bisht A.; Biswas B.; Bitossi M.; Bizouard M.-A.; Blackburn J.K.; Blackman J.; Blair C.D.; Blair D.G.; Blair R.M.; Bobba F.; Bode N.; Boer M.; Bogaert G.; Boldrini M.; Bondu F.; Bonilla E.; Bonnand R.; Booker P.; Boom B.A.; Bork R.; Boschi V.; Bose N.; Bose S.; Bossilkov V.; Boudart V.; Bouffanais Y.; Bozzi A.; Bradaschia C.; Brady P.R.; Bramley A.; Branch A.; Branchesi M.; Brau J.E.; Breschi M.; Briant T.; Briggs J.H.; Brillet A.; Brinkmann M.; Brockill P.; Brooks A.F.; Brooks J.; Brown D.D.; Brunett S.; Bruno G.; Bruntz R.; Bryant J.; Buikema A.; Bulik T.; Bulten H.J.; Buonanno A.; Buscicchio R.; Buskulic D.; Byer R.L.; Cadonati L.; Caesar M.; Cagnoli G.; Cahillane C.; Iii H.W.C.; Bustillo J.C.; Callaghan J.D.; Callister T.A.; Calloni E.; Camp J.B.; Canepa M.; Cannavacciuolo M.; Cannon K.C.; Cao H.; Cao J.; Capote E.; Carapella G.; Carbognani F.; Carlin J.B.; Carney M.F.; Carpinelli M.; Carullo G.; Carver T.L.; Diaz J.C.; Casentini C.; Castaldi G.; Caudill S.; Cavaglia M.; Cavalier F.; Cavalieri R.; Cella G.; Cerda-Duran P.; Cesarini E.; Chaibi W.; Chakravarti K.; Champion B.; Chan C.-H.; Chan C.; Chan C.L.; Chandra K.; Chanial P.; Chao S.; Charlton P.; Chase E.A.; Chassande-Mottin E.; Chatterjee D.; Chaturvedi M.; Chen A.; Chen H.Y.; Chen J.; Chen X.; Chen Y.; Chen Z.; Cheng H.; Cheong C.K.; Cheung H.Y.; Chia H.Y.; Chiadini F.; Chierici R.; Chincarini A.; Chiofalo M.L.; Chiummo A.; Cho G.; Cho H.S.; Choate S.; Choudhary R.K.; Choudhary S.; Christensen N.; Chu Q.; Chua S.; Chung K.W.; Ciani G.; Ciecielag P.; Cieslar M.; Cifaldi M.; Ciobanu A.A.; Ciolfi R.; Cipriano F.; Cirone A.; Clara F.; Clark E.N.; Clark J.A.; Clarke L.; Clearwater P.; Clesse S.; Cleva F.; Coccia E.; Cohadon P.-F.; Cohen D.E.; Cohen L.; Colleoni M.; Collette C.G.; Colpi M.; Compton C.M.; Constancio M.; Conti L.; Cooper S.J.; Corban P.; Corbitt T.R.; Cordero-Carrion I.; Corezzi S.; Corley K.R.; Cornish N.; Corre D.; Corsi A.; Cortese S.; Costa C.A.; Cotesta R.; Coughlin M.W.; Coughlin S.B.; Coulon J.-P.; Countryman S.T.; Cousins B.; Couvares P.; Covas P.B.; Coward D.M.; Cowart M.J.; Coyne D.C.; Coyne R.; Creighton J.D.E.; Creighton T.D.; Criswell A.W.; Croquette M.; Crowder S.G.; Cudell J.R.; Cullen T.J.; Cumming A.; Cummings R.; Cuoco E.; Curylo M.; Canton T.D.; Dalya G.; Dana A.; Daneshgaranbajastani L.M.; D'Angelo B.; Danilishin S.L.; D'Antonio S.; Danzmann K.; Darsow-Fromm C.; Dasgupta A.; Datrier L.E.H.; Dattilo V.; Dave I.; Davier M.; Davies G.S.; Davis D.; Daw E.J.; Dean R.; Debra D.; Deenadayalan M.; Degallaix J.; Laurentis M.D.; Deleglise S.; Favero V.D.; Lillo F.D.; Lillo N.D.; Pozzo W.D.; Demarchi L.M.; Matteis F.D.; D'Emilio V.; Demos N.; Dent T.; Depasse A.; Pietri R.D.; Rosa R.D.; Rossi C.D.; Desalvo R.; Simone R.D.; Dhurandhar S.; Diaz M.C.; Diaz-Ortiz M.; Didio N.A.; Dietrich T.; Di Fiore L.; Di Fronzo C.; Di Giorgio C.; Di Giovanni F.; Di Girolamo T.; Di Lieto A.; Ding B.; Di Pace S.; Di Palma I.; Di Renzo F.; Divakarla A.K.; Dmitriev A.; Doctor Z.; D'Onofrio L.; Donovan F.; Dooley K.L.; Doravari S.; Dorrington I.; Drago M.; Driggers J.C.; Drori Y.; Du Z.; Ducoin J.-G.; Dupej P.; Durante O.; D'Urso D.; Duverne P.-A.; Dwyer S.E.; Easter P.J.; Ebersold M.; Eddolls G.; Edelman B.; Edo T.B.; Edy O.; Effler A.; Eichholz J.; Eikenberry S.S.; Eisenmann M.; Eisenstein R.A.; Ejlli A.; Errico L.; Essick R.C.; Estelles H.; Estevez D.; Etienne Z.; Etzel T.; Evans M.; Evans T.M.; Ewing B.E.; Ezquiaga J.M.; Fafone V.; Fair H.; Fairhurst S.; Fan X.; Farah A.M.; Farinon S.; Farr B.; Farr W.M.; Farrow N.W.; Fauchon-Jones E.J.; Favata M.; Fays M.; Fazio M.; Feicht J.; Fejer M.M.; Feng F.; Fenyvesi E.; Ferguson D.L.; Fernandez-Galiana A.; Ferrante I.; Ferreira T.A.; Fidecaro F.; Figura P.; Fiori I.; Fishbach M.; Fisher R.P.; Fittipaldi R.; Fiumara V.; Flaminio R.; Floden E.; Flynn E.; Fong H.; Font J.A.; Fornal B.; Forsyth P.W.F.; Franke A.; Frasca S.; Frasconi F.; Frederick C.; Frei Z.; Freise A.; Frey R.; Fritschel P.; Frolov V.V.; Fronze G.G.; Fulda P.; Fyffe M.; Gabbard H.A.; Gadre B.U.; Gaebel S.M.; Gair J.R.; Gais J.; Galaudage S.; Gamba R.; Ganapathy D.; Ganguly A.; Gaonkar S.G.; Garaventa B.; Garcia-Nunez C.; Garcia-Quiros C.; Garufi F.; Gateley B.; Gaudio S.; Gayathri V.; Gemme G.; Gennai A.; George J.; Gergely L.; Gewecke P.; Ghonge S.; Ghosh A.; Ghosh A.; Ghosh S.; Ghosh S.; Ghosh S.; Giacomazzo B.; Giacoppo L.; Giaime J.A.; Giardina K.D.; Gibson D.R.; Gier C.; Giesler M.; Giri P.; Gissi F.; Glanzer J.; Gleckl A.E.; Godwin P.; Goetz E.; Goetz R.; Gohlke N.; Goncharov B.; Gonzalez G.; Gopakumar A.; Gosselin M.; Gouaty R.; Goyal S.; Grace B.; Grado A.; Granata M.; Granata V.; Grant A.; Gras S.; Grassia P.; Gray C.; Gray R.; Greco G.; Green A.C.; Green R.; Gretarsson A.M.; Gretarsson E.M.; Griffith D.; Griffiths W.; Griggs H.L.; Grignani G.; Grimaldi A.; Grimes E.; Grimm S.J.; Grote H.; Grunewald S.; Gruning P.; Guerrero J.G.; Guidi G.M.; Guimaraes A.R.; Guixe G.; Gulati H.K.; Guo H.-K.; Guo Y.; Gupta A.; Gupta A.; Gupta P.; Gustafson E.K.; Gustafson R.; Guzman F.; Haegel L.; Halim O.; Hall E.D.; Hamilton E.Z.; Hammond G.; Haney M.; Hanks J.; Hanna C.; Hannam M.D.; Hannuksela O.A.; Hansen H.; Hansen T.J.; Hanson J.; Harder T.; Hardwick T.; Haris K.; Harms J.; Harry G.M.; Harry I.W.; Hartwig D.; Haskell B.; Hasskew R.K.; Haster C.-J.; Haughian K.; Hayes F.J.; Healy J.; Heidmann A.; Heintze M.C.; Heinze J.; Heinzel J.; Heitmann H.; Hellman F.; Hello P.; Helmling-Cornell A.F.; Hemming G.; Hendry M.; Heng I.S.; Hennes E.; Hennig J.; Hennig M.H.; Vivanco F.H.; Heurs M.; Hild S.; Hill P.; Hines A.S.; Hochheim S.; Hofman D.; Hohmann J.N.; Holgado A.M.; Holland N.A.; Hollows I.J.; Holmes Z.J.; Holt K.; Holz D.E.; Hopkins P.; Hough J.; Howell E.J.; Hoy C.G.; Hoyland D.; Hreibi A.; Hsu Y.; Huang Y.; Hubner M.T.; Huddart A.D.; Huerta E.A.; Hughey B.; Hui V.; Husa S.; Huttner S.H.; Huxford R.; Huynh-Dinh T.; Idzkowski B.; Iess A.; Inchauspe H.; Ingram C.; Intini G.; Isi M.; Isleif K.; Iyer B.R.; Jaberianhamedan V.; Jacqmin T.; Jadhav S.J.; Jadhav S.P.; James A.L.; Jan A.Z.; Jani K.; Janquart J.; Janssens K.; Janthalur N.N.; Jaranowski P.; Jariwala D.; Jaume R.; Jenkins A.C.; Jeunon M.; Jia W.; Jiang J.; Johns G.R.; Jones A.W.; Jones D.I.; Jones J.D.; Jones P.; Jones R.; Jonker R.J.G.; Ju L.; Junker J.; Kalaghatgi C.V.; Kalogera V.; Kamai B.; Kandhasamy S.; Kang G.; Kanner J.B.; Kao Y.; Kapadia S.J.; Kapasi D.P.; Karat S.; Karathanasis C.; Karki S.; Kashyap R.; Kasprzack M.; Kastaun W.; Katsanevas S.; Katsavounidis E.; Katzman W.; Kaur T.; Kawabe K.; Kefelian F.; Keitel D.; Key J.S.; Khadka S.; Khalili F.Y.; Khan I.; Khan S.; Khazanov E.A.; Khetan N.; Khursheed M.; Kijbunchoo N.; Kim C.; Kim J.C.; Kim K.; Kim W.S.; Kim Y.-M.; Kimball C.; King P.J.; Kinley-Hanlon M.; Kirchhoff R.; Kissel J.S.; Kleybolte L.; Klimenko S.; Knee A.M.; Knowles T.D.; Knyazev E.; Koch P.; Koekoek G.; Koley S.; Kolitsidou P.; Kolstein M.; Komori K.; Kondrashov V.; Kontos A.; Koper N.; Korobko M.; Kovalam M.; Kozak D.B.; Kringel V.; Krishnendu N.V.; Krolak A.; Kuehn G.; Kuei F.; Kumar A.; Kumar P.; Kumar R.; Kumar R.; Kuns K.; Kwang S.; Laghi D.; Lalande E.; Lam T.L.; Lamberts A.; Landry M.; Lane B.B.; Lang R.N.; Lange J.; Lantz B.; Rosa I.L.; Lartaux-Vollard A.; Lasky P.D.; Laxen M.; Lazzarini A.; Lazzaro C.; Leaci P.; Leavey S.; Lecoeuche Y.K.; Lee H.M.; Lee H.W.; Lee J.; Lee K.; Lehmann J.; Lemaitre A.; Leon E.; Leroy N.; Letendre N.; Levin Y.; Leviton J.N.; Li A.K.Y.; Li B.; Li J.; Li T.G.F.; Li X.; Linde F.; Linker S.D.; Linley J.N.; Littenberg T.B.; Liu J.; Liu K.; Liu X.; Llorens-Monteagudo M.; Lo R.K.L.; Lockwood A.; Lollie M.L.; London L.T.; Longo A.; Lopez D.; Lorenzini M.; Loriette V.; Lormand M.; Losurdo G.; Lough J.D.; Lousto C.O.; Lovelace G.; Luck H.; Lumaca D.; Lundgren A.P.; Macas R.; Macinnis M.; Macleod D.M.; Macmillan I.A.O.; Macquet A.; Hernandez I.M.; Magana-Sandoval F.; Magazzu C.; Magee R.M.; Maggiore R.; Majorana E.; Makarem C.; Maksimovic I.; Maliakal S.; Malik A.; Man N.; Mandic V.; Mangano V.; Mango J.L.; Mansell G.L.; Manske M.; Mantovani M.; Mapelli M.; Marchesoni F.; Marion F.; Mark Z.; Marka S.; Marka Z.; Markakis C.; Markosyan A.S.; Markowitz A.; Maros E.; Marquina A.; Marsat S.; Martelli F.; Martin I.W.; Martin R.M.; Martinez M.; Martinez V.; Martinovic K.; Martynov D.V.; Marx E.J.; Masalehdan H.; Mason K.; Massera E.; Masserot A.; Massinger T.J.; Masso-Reid M.; Mastrogiovanni S.; Matas A.; Mateu-Lucena M.; Matichard F.; Matiushechkina M.; Mavalvala N.; McCann J.J.; McCarthy R.; McClelland D.E.; McClincy P.; McCormick S.; McCuller L.; McGhee G.I.; McGuire S.C.; McIsaac C.; McIver J.; McManus D.J.; McRae T.; McWilliams S.T.; Meacher D.; Mehmet M.; Mehta A.K.; Melatos A.; Melchor D.A.; Mendell G.; Menendez-Vazquez A.; Menoni C.S.; Mercer R.A.; Mereni L.; Merfeld K.; Merilh E.L.; Merritt J.D.; Merzougui M.; Meshkov S.; Messenger C.; Messick C.; Meyers P.M.; Meylahn F.; Mhaske A.; Miani A.; Miao H.; Michaloliakos I.; Michel C.; Middleton H.; Milano L.; Miller A.L.; Millhouse M.; Mills J.C.; Milotti E.; Milovich-Goff M.C.; Minazzoli O.; Minenkov Y.; Mir L.M.; Mishkin A.; Mishra C.; Mishra T.; Mistry T.; Mitra S.; Mitrofanov V.P.; Mitselmakher G.; Mittleman R.; Mo G.; Mogushi K.; Mohapatra S.R.P.; Mohite S.R.; Molina I.; Molina-Ruiz M.; Mondin M.; Montani M.; Moore C.J.; Moraru D.; Morawski F.; More A.; Moreno C.; Moreno G.; Morisaki S.; Mours B.; Mow-Lowry C.M.; Mozzon S.; Muciaccia F.; Mukherjee A.; Mukherjee D.; Mukherjee S.; Mukherjee S.; Mukund N.; Mullavey A.; Munch J.; Muniz E.A.; Murray P.G.; Musenich R.; Nadji S.L.; Nagar A.; Nardecchia I.; Naticchioni L.; Nayak B.; Nayak R.K.; Neil B.F.; Neilson J.; Nelemans G.; Nelson T.J.N.; Nery M.; Neunzert A.; Ng K.Y.; Ng S.W.S.; Nguyen C.; Nguyen P.; Nguyen T.; Nichols S.A.; Nissanke S.; Nocera F.; Noh M.; Norman M.; North C.; Nuttall L.K.; Oberling J.; O'Brien B.D.; O'Dell J.; Oganesyan G.; Oh J.J.; Oh S.H.; Ohme F.; Ohta H.; Okada M.A.; Olivetto C.; Oram R.; O'Reilly B.; Ormiston R.G.; Ormsby N.D.; Ortega L.F.; O'Shaughnessy R.; O'Shea E.; Ossokine S.; Osthelder C.; Ottaway D.J.; Overmier H.; Pace A.E.; Pagano G.; Page M.A.; Pagliaroli G.; Pai A.; Pai S.A.; Palamos J.R.; Palashov O.; Palomba C.; Panda P.K.; Pang P.T.H.; Pankow C.; Pannarale F.; Pant B.C.; Paoletti F.; Paoli A.; Paolone A.; Parker W.; Pascucci D.; Pasqualetti A.; Passaquieti R.; Passuello D.; Patel M.; Patricelli B.; Payne E.; Pechsiri T.C.; Pedraza M.; Pegoraro M.; Pele A.; Penn S.; Perego A.; Pereira A.; Pereira T.; Perez C.J.; Perigois C.; Perreca A.; Perries S.; Petermann J.; Petterson D.; Pfeiffer H.P.; Pham K.A.; Phukon K.S.; Piccinni O.J.; Pichot M.; Piendibene M.; Piergiovanni F.; Pierini L.; Pierro V.; Pillant G.; Pilo F.; Pinard L.; Pinto I.M.; Piotrzkowski B.J.; Piotrzkowski K.; Pirello M.; Pitkin M.; Placidi E.; Plastino W.; Pluchar C.; Poggiani R.; Polini E.; Pong D.Y.T.; Ponrathnam S.; Popolizio P.; Porter E.K.; Powell J.; Pracchia M.; Pradier T.; Prajapati A.K.; Prasai K.; Prasanna R.; Pratten G.; Prestegard T.; Principe M.; Prodi G.A.; Prokhorov L.; Prosposito P.; Prudenzi L.; Puecher A.; Punturo M.; Puosi F.; Puppo P.; Purrer M.; Qi H.; Quetschke V.; Quinonez P.J.; Quitzow-James R.; Raab F.J.; Raaijmakers G.; Radkins H.; Radulesco N.; Raffai P.; Rail S.X.; Raja S.; Rajan C.; Ramirez K.E.; Ramirez T.D.; Ramos-Buades A.; Rana J.; Rapagnani P.; Rapol U.D.; Ratto B.; Raymond V.; Raza N.; Razzano M.; Read J.; Rees L.A.; Regimbau T.; Rei L.; Reid S.; Reitze D.H.; Relton P.; Rettegno P.; Ricci F.; Richardson C.J.; Richardson J.W.; Richardson L.; Ricker P.M.; Riemenschneider G.; Riles K.; Rizzo M.; Robertson N.A.; Robie R.; Robinet F.; Rocchi A.; Rocha J.A.; Rodriguez S.; Rodriguez-Soto R.D.; Rolland L.; Rollins J.G.; Roma V.J.; Romanelli M.; Romano R.; Romel C.L.; Romero A.; Romero-Shaw I.M.; Romie J.H.; Rose C.A.; Rosinska D.; Rosofsky S.G.; Ross M.P.; Rowan S.; Rowlinson S.J.; Roy S.; Roy S.; Rozza D.; Ruggi P.; Ryan K.; Sachdev S.; Sadecki T.; Sadiq J.; Sakellariadou M.; Salafia O.S.; Salconi L.; Saleem M.; Salemi F.; Samajdar A.; Sanchez E.J.; Sanchez J.H.; Sanchez L.E.; Sanchis-Gual N.; Sanders J.R.; Sanuy A.; Saravanan T.R.; Sarin N.; Sassolas B.; Satari H.; Sathyaprakash B.S.; Sauter O.; Savage R.L.; Savant V.; Sawant D.; Sawant H.L.; Sayah S.; Schaetzl D.; Scheel M.; Scheuer J.; Schindler-Tyka A.; Schmidt P.; Schnabel R.; Schneewind M.; Schofield R.M.S.; Schonbeck A.; Schulte B.W.; Schutz B.F.; Schwartz E.; Scott J.; Scott S.M.; Seglar-Arroyo M.; Seidel E.; Sellers D.; Sengupta A.S.; Sennett N.; Sentenac D.; Seo E.G.; Sequino V.; Sergeev A.; Setyawati Y.; Shaffer T.; Shahriar M.S.; Shams B.; Sharifi S.; Sharma A.; Sharma P.; Shawhan P.; Shcheblanov N.S.; Shen H.; Shikauchi M.; Shink R.; Shoemaker D.H.; Shoemaker D.M.; Shukla K.; Shyamsundar S.; Sieniawska M.; Sigg D.; Singer L.P.; Singh D.; Singh N.; Singha A.; Sintes A.M.; Sipala V.; Skliris V.; Slagmolen B.J.J.; Slaven-Blair T.J.; Smetana J.; Smith J.R.; Smith R.J.E.; Somala S.N.; Son E.J.; Soni K.; Soni S.; Sorazu B.; Sordini V.; Sorrentino F.; Sorrentino N.; Soulard R.; Souradeep T.; Sowell E.; Spagnuolo V.; Spencer A.P.; Spera M.; Srivastava A.K.; Srivastava V.; Staats K.; Stachie C.; Steer D.A.; Steinlechner J.; Steinlechner S.; Stops D.J.; Stover M.; Strain K.A.; Strang L.C.; Stratta G.; Strunk A.; Sturani R.; Stuver A.L.; Sudbeck J.; Sudhagar S.; Sudhir V.; Suh H.G.; Summerscales T.Z.; Sun H.; Sun L.; Sunil S.; Sur A.; Suresh J.; Sutton P.J.; Swinkels B.L.; Szczepanczyk M.J.; Szewczyk P.; Tacca M.; Tait S.C.; Talbot C.; Tanasijczuk A.J.; Tanner D.B.; Tao D.; Tapia A.; San Martin E.N.T.; Tasson J.D.; Tenorio R.; Terkowski L.; Test M.; Thirugnanasambandam M.P.; Thomas M.; Thomas P.; Thompson J.E.; Thondapu S.R.; Thorne K.A.; Thrane E.; Tiwari S.; Tiwari S.; Tiwari V.; Toland K.; Tolley A.E.; Tonelli M.; Torres-Forne A.; Torrie C.I.; E Melo I.T.; Toyra D.; Trapananti A.; Travasso F.; Traylor G.; Tringali M.C.; Tripathee A.; Troiano L.; Trovato A.; Trudeau R.J.; Tsai D.S.; Tsai D.; Tsang K.W.; Tse M.; Tso R.; Tsukada L.; Tsuna D.; Tsutsui T.; Turconi M.; Ubhi A.S.; Udall R.P.; Ueno K.; Ugolini D.; Unnikrishnan C.S.; Urban A.L.; Usman S.A.; Utina A.C.; Vahlbruch H.; Vajente G.; Vajpeyi A.; Valdes G.; Valentini M.; Valsan V.; Van Bakel N.; Van Beuzekom M.; Van Den Brand J.F.J.; Van Den Broeck C.; Vander-Hyde D.C.; Van Der Schaaf L.; Van Heijningen J.V.; Vanosky J.; Vardaro M.; Vargas A.F.; Varma V.; Vasuth M.; Vecchio A.; Vedovato G.; Veitch J.; Veitch P.J.; Venkateswara K.; Venneberg J.; Venugopalan G.; Verkindt D.; Verma Y.; Veske D.; Vetrano F.; Vicere A.; Viets A.D.; Villa-Ortega V.; Vinet J.-Y.; Vitale S.; Vo T.; Vocca H.; Von Reis E.R.G.; Von Wrangel J.; Vorvick C.; Vyatchanin S.P.; Wade L.E.; Wade M.; Wagner K.J.; Walet R.C.; Walker M.; Wallace G.S.; Wallace L.; Walsh S.; Wang J.Z.; Wang W.H.; Ward R.L.; Warner J.; Was M.; Washington N.Y.; Watchi J.; Weaver B.; Wei L.; Weinert M.; Weinstein A.J.; Weiss R.; Weller C.M.; Wellmann F.; Wen L.; Wessels P.; Westhouse J.W.; Wette K.; Whelan J.T.; White D.D.; Whiting B.F.; Whittle C.; Wilken D.; Williams D.; Williams M.J.; Williamson A.R.; Willis J.L.; Willke B.; Wilson D.J.; Winkler W.; Wipf C.C.; Wlodarczyk T.; Woan G.; Woehler J.; Wofford J.K.; Wong I.C.F.; Wright M.; Wu D.S.; Wysocki D.M.; Xiao L.; Yamamoto H.; Yang F.W.; Yang L.; Yang Y.; Yang Z.; Yap M.J.; Yeeles D.W.; Yelikar A.B.; Yeung M.C.; Ying M.; Yoon A.; Yu H.; Yu H.; Zadrozny A.; Zanolin M.; Zelenova T.; Zendri J.-P.; Zevin M.; Zhang J.; Zhang L.; Zhang R.; Zhang T.; Zhao C.; Zhao G.; Zhao Y.; Zhou Z.; Zhu X.J.; Zimmerman A.B.; Zucker M.E.; Zweizig J.Abbott, R.; Abbott, T. D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, A.; Adams, C.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agarwal, D.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Aleman, K. M.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Anand, S.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Ansoldi, S.; Antelis, J. M.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arene, M.; Arnaud, N.; Aronson, S. M.; Arun, K. G.; Asali, Y.; Ashton, G.; Aston, S. M.; Astone, P.; Aubin, F.; Aufmuth, P.; Aultoneal, K.; Austin, C.; Babak, S.; Badaracco, F.; Bader, M. K. M.; Bae, S.; Baer, A. M.; Bagnasco, S.; Bai, Y.; Baird, J.; Ball, M.; Ballardin, G.; Ballmer, S. W.; Bals, M.; Balsamo, A.; Baltus, G.; Banagiri, S.; Bankar, D.; Bankar, R. S.; Barayoga, J. C.; Barbieri, C.; Barish, B. C.; Barker, D.; Barneo, P.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Bawaj, M.; Bayley, J. C.; Baylor, A. C.; Bazzan, M.; Becsy, B.; Bedakihale, V. M.; Bejger, M.; Belahcene, I.; Benedetto, V.; Beniwal, D.; Benjamin, M. G.; Bennett, T. F.; Bentley, J. D.; Benyaala, M.; Bergamin, F.; Berger, B. K.; Bernuzzi, S.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhandare, R.; Bhandari, A. V.; Bhattacharjee, D.; Bhaumik, S.; Bidler, J.; Bilenko, I. A.; Billingsley, G.; Birney, R.; Birnholtz, O.; Biscans, S.; Bischi, M.; Biscoveanu, S.; Bisht, A.; Biswas, B.; Bitossi, M.; Bizouard, M. -A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bobba, F.; Bode, N.; Boer, M.; Bogaert, G.; Boldrini, M.; Bondu, F.; Bonilla, E.; Bonnand, R.; Booker, P.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, N.; Bose, S.; Bossilkov, V.; Boudart, V.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Bramley, A.; Branch, A.; Branchesi, M.; Brau, J. E.; Breschi, M.; Briant, T.; Briggs, J. H.; Brillet, A.; Brinkmann, M.; Brockill, P.; Brooks, A. F.; Brooks, J.; Brown, D. D.; Brunett, S.; Bruno, G.; Bruntz, R.; Bryant, J.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buscicchio, R.; Buskulic, D.; Byer, R. L.; Cadonati, L.; Caesar, M.; Cagnoli, G.; Cahillane, C.; Iii, H. W. C.; Bustillo, J. C.; Callaghan, J. D.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Cannavacciuolo, M.; Cannon, K. C.; Cao, H.; Cao, J.; Capote, E.; Carapella, G.; Carbognani, F.; Carlin, J. B.; Carney, M. F.; Carpinelli, M.; Carullo, G.; Carver, T. L.; Diaz, J. C.; Casentini, C.; Castaldi, G.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cerda-Duran, P.; Cesarini, E.; Chaibi, W.; Chakravarti, K.; Champion, B.; Chan, C. -H.; Chan, C.; Chan, C. L.; Chandra, K.; Chanial, P.; Chao, S.; Charlton, P.; Chase, E. A.; Chassande-Mottin, E.; Chatterjee, D.; Chaturvedi, M.; Chen, A.; Chen, H. Y.; Chen, J.; Chen, X.; Chen, Y.; Chen, Z.; Cheng, H.; Cheong, C. K.; Cheung, H. Y.; Chia, H. Y.; Chiadini, F.; Chierici, R.; Chincarini, A.; Chiofalo, M. L.; Chiummo, A.; Cho, G.; Cho, H. S.; Choate, S.; Choudhary, R. K.; Choudhary, S.; Christensen, N.; Chu, Q.; Chua, S.; Chung, K. W.; Ciani, G.; Ciecielag, P.; Cieslar, M.; Cifaldi, M.; Ciobanu, A. A.; Ciolfi, R.; Cipriano, F.; Cirone, A.; Clara, F.; Clark, E. N.; Clark, J. A.; Clarke, L.; Clearwater, P.; Clesse, S.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Cohen, D. E.; Cohen, L.; Colleoni, M.; Collette, C. G.; Colpi, M.; Compton, C. M.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrion, I.; Corezzi, S.; Corley, K. R.; Cornish, N.; Corre, D.; C

    Search for lensing signatures in the gravitational-wave observations from the first half of LIGO-Virgo's third observing run

    No full text

    Search for Lensing Signatures in the Gravitational-Wave Observations from the First Half of LIGO-Virgo&apos;s Third Observing Run

    Get PDF
    We search for signatures of gravitational lensing in the gravitational-wave signals from compact binary coalescences detected by Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) and Advanced Virgo during O3a, the first half of their third observing run. We study: (1) the expected rate of lensing at current detector sensitivity and the implications of a non-observation of strong lensing or a stochastic gravitational-wave background on the merger-rate density at high redshift; (2) how the interpretation of individual high-mass events would change if they were found to be lensed; (3) the possibility of multiple images due to strong lensing by galaxies or galaxy clusters; and (4) possible wave-optics effects due to point-mass microlenses. Several pairs of signals in the multiple-image analysis show similar parameters and, in this sense, are nominally consistent with the strong lensing hypothesis. However, taking into account population priors, selection effects, and the prior odds against lensing, these events do not provide sufficient evidence for lensing. Overall, we find no compelling evidence for lensing in the observed gravitational-wave signals from any of these analyses
    corecore