91 research outputs found

    Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions

    Get PDF
    The mitigation scenarios database of the Intergovernmental Panel on Climate Change's Sixth Assessment Report is an important resource for informing policymaking on energy transitions. However, there is a large variety of models, scenario designs, and resulting outputs. Here we analyse the scenarios consistent with limiting warming to 2 °C or below regarding the speed, trajectory, and feasibility of different fossil fuel reduction pathways. In scenarios limiting warming to 1.5 °C with no or limited overshoot, global coal, oil, and natural gas supply (intended for all uses) decline on average by 95%, 62%, and 42%, respectively, from 2020 to 2050, but the long-term role of gas is highly variable. Higher-gas pathways are enabled by higher carbon capture and storage (CCS) and carbon dioxide removal (CDR), but are likely associated with inadequate model representation of regional CO2 storage capacity and technology adoption, diffusion, and path-dependencies. If CDR is constrained by limits derived from expert consensus, the respective modelled coal, oil, and gas reductions become 99%, 70%, and 84%. Our findings suggest the need to adopt unambiguous near- and long-term reduction benchmarks in coal, oil, and gas production and use alongside other climate mitigation targets

    Allelic effects on uromodulin aggregates drive autosomal dominant tubulointerstitial kidney disease

    Get PDF
    Missense mutations in the uromodulin (UMOD) gene cause autosomal dominant tubulointerstitial kidney disease (ADTKD), one of the most common monogenic kidney diseases. The unknown impact of the allelic and gene dosage effects and fate of mutant uromodulin leaves open the gap between postulated gain-of-function mutations, end-organ damage and disease progression in ADTKD. Based on two prevalent missense UMOD mutations with divergent disease progression, we generated UmodC171Y^{C171Y} and UmodR186S^{R186S} knock-in mice that showed strong allelic and gene dosage effects on uromodulin aggregates and activation of ER stress and unfolded protein and immune responses, leading to variable kidney damage. Deletion of the wild-type Umod allele in heterozygous UmodR186S^{R186S} mice increased the formation of uromodulin aggregates and ER stress. Studies in kidney tubular cells confirmed differences in uromodulin aggregates, with activation of mutation-specific quality control and clearance mechanisms. Enhancement of autophagy by starvation and mTORC1 inhibition decreased uromodulin aggregates. These studies substantiate the role of toxic aggregates as driving progression of ADTKD-UMOD, relevant for therapeutic strategies to improve clearance of mutant uromodulin

    COUP-TF interacting protein 2 represses the initial phase of HIV-1 gene transcription in human microglial cells

    Get PDF
    Human immunodeficiency virus type 1 (HIV-1) gene transcription is characterized by two temporally distinct phases. While the initial phase relies solely on cellular transcription factors, the subsequent phase is activated by the viral Tat transactivator. We have previously reported that the subsequent phase of viral gene transcription can be repressed by the chicken ovalbumin upstream promoter transcription factor (COUP-TF)-interacting protein 2 (CTIP2) in human microglial cells [O. Rohr, D. Lecestre, S. Chasserot-Golaz, C. Marban, D. Avram, D. Aunis, M. Leid and E. Schaeffer (2003), J. Virol., 77, 5415–5427]. Here, we demonstrate that CTIP proteins also repress the initial phase of HIV-1 gene transcription, mainly supported by the cellular transcription factors Sp1 and COUP-TF in microglial cells. We report that CTIP2 represses Sp1- and COUP-TF-mediated activation of HIV-1 gene transcription and viral replication as a result of physical interactions with COUP-TF and Sp1 in microglial nuclei. Using laser confocal microscopy CTIP2 was found to colocalize with Sp1, COUP-TF and the heterochromatin-associated protein Hp1α, which is mainly detected in transcriptionally repressed heterochromatic region. Moreover, we describe that CTIP2 can be recruited to the HIV-1 promoter via its association with Sp1 bound to the GC-box sequences of the long terminal repeat (LTR). Since our findings demonstrate that CTIP2 interacts with the HIV-1 proximal promoter, it is likely that CTIP2 promotes HIV-1 gene silencing by forcing transcriptionally repressed heterochromatic environment to the viral LTR region

    A dynamo driven by zonal jets at the upper surface: Applications to giant planets

    Get PDF
    We present a dynamo mechanism arising from the presence of barotropically unstable zonal jet currents in a rotating spherical shell. The shear instability of the zonal flow develops in the form of a global Rossby mode, whose azimuthal wavenumber depends on the width of the zonal jets. We obtain self-sustained magnetic fields at magnetic Reynolds numbers greater than 1000. We show that the propagation of the Rossby waves is crucial for dynamo action. The amplitude of the axisymmetric poloidal magnetic field depends on the wavenumber of the Rossby mode, and hence on the width of the zonal jets. We discuss the plausibility of this dynamo mechanism for generating the magnetic field of the giant planets. Our results suggest a possible link between the topology of the magnetic field and the profile of the zonal winds observed at the surface of the giant planets. For narrow Jupiter-like jets, the poloidal magnetic field is dominated by an axial dipole whereas for wide Neptune-like jets, the axisymmetric poloidal field is weak.Comment: published in Icaru

    The G-quartet containing FMRP binding site in FMR1 mRNA is a potent exonic splicing enhancer

    Get PDF
    The fragile X mental retardation protein (FMRP) is a RNA-binding protein proposed to post-transcriptionally regulate the expression of genes important for neuronal development and synaptic plasticity. We previously demonstrated that FMRP binds to its own FMR1 mRNA via a guanine-quartet (G-quartet) RNA motif. However, the functional effect of this binding on FMR1 expression was not established. In this work, we characterized the FMRP binding site (FBS) within the FMR1 mRNA by a site directed mutagenesis approach and we investigated its importance for FMR1 expression. We show that the FBS in the FMR1 mRNA adopts two alternative G-quartet structures to which FMRP can equally bind. While FMRP binding to mRNAs is generally proposed to induce translational regulation, we found that mutations in the FMR1 mRNA suppressing binding to FMRP do not affect its translation in cellular models. We show instead that the FBS is a potent exonic splicing enhancer in a minigene system. Furthermore, FMR1 alternative splicing is affected by the intracellular level of FMRP. These data suggest that the G-quartet motif present in the FMR1 mRNA can act as a control element of its alternative splicing in a negative autoregulatory loop

    Standard survey methods for estimating colony losses and explanatory risk factors in Apis mellifera

    Get PDF
    This chapter addresses survey methodology and questionnaire design for the collection of data pertaining to estimation of honey bee colony loss rates and identification of risk factors for colony loss. Sources of error in surveys are described. Advantages and disadvantages of different random and non-random sampling strategies and different modes of data collection are presented to enable the researcher to make an informed choice. We discuss survey and questionnaire methodology in some detail, for the purpose of raising awareness of issues to be considered during the survey design stage in order to minimise error and bias in the results. Aspects of survey design are illustrated using surveys in Scotland. Part of a standardized questionnaire is given as a further example, developed by the COLOSS working group for Monitoring and Diagnosis. Approaches to data analysis are described, focussing on estimation of loss rates. Dutch monitoring data from 2012 were used for an example of a statistical analysis with the public domain R software. We demonstrate the estimation of the overall proportion of losses and corresponding confidence interval using a quasi-binomial model to account for extra-binomial variation. We also illustrate generalized linear model fitting when incorporating a single risk factor, and derivation of relevant confidence intervals

    An intermediate-effect size variant in UMOD confers risk for chronic kidney disease

    Get PDF
    The kidney-specific gene UMOD encodes for uromodulin, the most abundant protein excreted in normal urine. Rare large-effect variants in UMOD cause autosomal dominant tubulointerstitial kidney disease (ADTKD), while common low-impact variants strongly associate with kidney function and the risk of chronic kidney disease (CKD) in the general population. It is unknown whether intermediate-effect variants in UMOD contribute to CKD. Here, candidate intermediate-effect UMOD variants were identified using large-population and ADTKD cohorts. Biological and phenotypical effects were investigated using cell models, in silico simulations, patient samples, and international databases and biobanks. Eight UMOD missense variants reported in ADTKD are present in the Genome Aggregation Database (gnomAD), with minor allele frequency (MAF) ranging from 10(−5) to 10(−3). Among them, the missense variant p.Thr62Pro is detected in ∼1/1,000 individuals of European ancestry, shows incomplete penetrance but a high genetic load in familial clusters of CKD, and is associated with kidney failure in the 100,000 Genomes Project (odds ratio [OR] = 3.99 [1.84 to 8.98]) and the UK Biobank (OR = 4.12 [1.32 to 12.85). Compared with canonical ADTKD mutations, the p.Thr62Pro carriers displayed reduced disease severity, with slower progression of CKD and an intermediate reduction of urinary uromodulin levels, in line with an intermediate trafficking defect in vitro and modest induction of endoplasmic reticulum (ER) stress. Identification of an intermediate-effect UMOD variant completes the spectrum of UMOD-associated kidney diseases and provides insights into the mechanisms of ADTKD and the genetic architecture of CKD

    Association of Estimated Glomerular Filtration Rate and Urinary Uromodulin Concentrations with Rare Variants Identified by UMOD Gene Region Sequencing

    Get PDF
    Background: Recent genome-wide association studies (GWAS) have identified common variants in the UMOD region associated with kidney function and disease in the general population. To identify novel rare variants as well as common variants that may account for this GWAS signal, the exons and 4 kb upstream region of UMOD were sequenced. Methodology/Principal Findings Individuals (n = 485) were selected based on presence of the GWAS risk haplotype and chronic kidney disease (CKD) in the ARIC Study and on the extremes of of the UMOD gene product, uromodulin, in urine (Tamm Horsfall protein, THP) in the Framingham Heart Study (FHS). Targeted sequencing was conducted using capillary based Sanger sequencing (3730 DNA Analyzer). Variants were tested for association with THP concentrations and estimated glomerular filtration rate (eGFR), and identified non-synonymous coding variants were genotyped in up to 22,546 follow-up samples. Twenty-four and 63 variants were identified in the 285 ARIC and 200 FHS participants, respectively. In both studies combined, there were 33 common and 54 rare (MAF<0.05) variants. Five non-synonymous rare variants were identified in FHS; borderline enrichment of rare variants was found in the extremes of THP (SKAT p-value = 0.08). Only V458L was associated with THP in the FHS general-population validation sample (p = 9*103^{−3}, n = 2,522), but did not show direction-consistent and significant association with eGFR in both the ARIC (n = 14,635) and FHS (n = 7,520) validation samples. Pooling all non-synonymous rare variants except V458L together showed non-significant associations with THP and eGFR in the FHS validation sample. Functional studies of V458L revealed no alternations in protein trafficking. Conclusions/Significance: Multiple novel rare variants in the UMOD region were identified, but none were consistently associated with eGFR in two independent study samples. Only V458L had modest association with THP levels in the general population and thus could not account for the observed GWAS signal
    corecore