36 research outputs found

    The role of an exergy-based building stock model for exploration of future decarbonisation scenarios and policy making

    Get PDF
    State-of-the-art research suggests that energy systems are best evaluated using exergy analysis, as exergy represents the real value of an energy source, demonstrating it to be the only rational basis for evaluation. After discovering the lack of thermodynamic integration into stock modelling, this paper presents the development of an exergy-based building stock model. The aim of this paper is twofold. Firstly, to investigate the impact of large-scale future energy retrofit scenarios in the English and Welsh (E&W) non-domestic sector, and secondly, to determine the potential of exergy analysis in improving sectoral efficiency and its potential implications on exergy-oriented policy making. The research explores seven different large-scale future retrofit scenarios that encompass typical, low-carbon, and low-exergy approaches. Modelling results show that by 2050, current regulations have the potential to reduce carbon emissions by up to 49.0±2.9% and increasing sector thermodynamic efficiency from 10.7% to 13.7%. On the other hand, a low-exergy oriented scenario based on renewable electricity and heat pumps is able to reduce carbon emissions by 88.2±2.4%, achieving a sectoral exergy efficiency of 19.8%. This modelling framework can provide energy policy makers with new insights on policy options based on exergy indicators and the assessment of their potential impact

    Occupant productivity and office indoor environment quality : a review of the literature

    Get PDF
    The purpose of this paper is to review the existing literature to draw an understanding of the relationship between indoor environmental quality and occupant productivity in an office environment. The study reviews over 300 papers from 67 journals, conference articles and books focusing on indoor environment, occupant comfort, productivity and green buildings. It limits its focus to the physical aspects of an office environment. The literature outlines eight Indoor Environmental Quality (IEQ) factors that influence occupant productivity in an office environment. It also discusses different physical parameters under each of the IEQ factors. It proposes a conceptual model of different factors affecting occupant productivity. The study also presents a review of the data collection methods utilised by the research studies that aim to investigate the relationship between IEQ and occupant productivity. The study presents a comprehensive discussion and analysis of different IEQ factors that affect occupant productivity. The paper provides a concise starting point for future researchers interested in the area of indoor environmental quality

    Design and implementation of a building control system in real-time devs

    No full text
    Buildings occupy about 40% of the world's energy consumption, accounting for 30% of total CO2 emissions. The motivation to reduce energy consumption and associated greenhouse gas emissions from buildings has led to increased interest in building automation. Real-Time Discrete Event Modelling and simulation presents an efficient way to design control systems for conservation of energy in buildings. We present a Building Controller built using the E-CD Boost library, that uses a DEVS model to control the lights and emergency systems of a building based on room occupancy and other inputs. This is a step in the development of model-based control systems to optimize energy consumption in buildings

    Sustainability Assessment of Infrastructure Elements with Integrated Energy Harvesting Technologies

    No full text
    The possibility of integrating energy harvesting devices into the bridge/tunnel structures along Coastal Highway Route E39 has been investigated in a feasibility study by the Norwegian Public Roads Administration (NPRA). The main advantage of integrating energy conversion devices in a structural element is the reduction of costs compared to stand-alone devices. The construction could be used as a foundation, a mooring point and provide a dry environment for electrical devices. Easy access to the production site could also reduce the cost for installation, operation and maintenance. Two important challenges related to harvesting renewable energy by infrastructure elements, without concerning about the energy source, are to store it or feed the energy to the grid. In the second case, tailoring generation to demand is of critical importance. Tasks such as supply and demand management, for instance, peak hour management, what kind of storage should be used - electrical or thermal - need be solved. Furthermore, integrating energy production devices in a structure might cause negative environmental impacts and affect the life expectancy and maintenance costs of such structures. The potential environmental impacts associated with renewable technologies are the consequences for bird life or marine fauna at the fjord crossing locations, as well as noise and visual impact. Thus, a sustainability assessment should be performed in order to quantify the ecological, economical and societal impacts of the suggested alternatives
    corecore