500 research outputs found

    Spin filters with Fano dots

    Get PDF
    We compute the zero bias conductance of electrons through a single ballistic channel weakly coupled to a side quantum dot with Coulomb interaction. In contrast to the standard setup which is designed to measure the transport through the dot, the channel conductance reveals Coulomb blockade dips rather then peaks due to the Fano-like backscattering. At zero temperature the Kondo effect leads to the formation of broad valleys of small conductance corresponding to an odd number of electrons on the dot. By applying a magnetic field in the dot region we find two dips corresponding to a total suppression in the conductance of spins up and down separated by an energy of the order of the Coulomb interaction. This provides a possibility of a perfect spin filter.Comment: 5 pages, 4 figures, to be published in European Physical Journal

    Theory of Fano-Kondo effect in quantum dot systems: temperature dependence of the Fano line shapes

    Full text link
    The Fano-Kondo effect in zero-bias conductance is studied based on a theoretical model for the T-shaped quantum dot by the finite temperature density matrix renormalization group method. The modification of the two Fano line shapes at much higher temperatures than the Kondo temperature is also investigated by the effective Fano parameter estimated as a fitting parameter.Comment: 2 pages, 2 figures, the proceeding of SCES'0

    Anderson impurity in the one-dimensional Hubbard model on finite size systems

    Full text link
    An Anderson impurity in a Hubbard model on chains with finite length is studied using the density-matrix renormalization group (DMRG) technique. In the first place, we analyzed how the reduction of electron density from half-filling to quarter-filling affects the Kondo resonance in the limit of Hubbard repulsion U=0. In general, a weak dependence with the electron density was found for the local density of states (LDOS) at the impurity except when the impurity, at half-filling, is close to a mixed valence regime. Next, in the central part of this paper, we studied the effects of finite Hubbard interaction on the chain at quarter-filling. Our main result is that this interaction drives the impurity into a more defined Kondo regime although accompanied in most cases by a reduction of the spectral weight of the impurity LDOS. Again, for the impurity in the mixed valence regime, we observed an interesting nonmonotonic behavior. We also concluded that the conductance, computed for a small finite bias applied to the leads, follows the behavior of the impurity LDOS, as in the case of non-interacting chains. Finally, we analyzed how the Hubbard interaction and the finite chain length affect the spin compensation cloud both at zero and at finite temperature, in this case using quantum Monte Carlo techniques.Comment: 9 pages, 9 figures, final version to be published in Phys. Rev.

    Reticuloendoteliosis

    Get PDF

    Interdisciplinary Teaching in the Field of Resilient Energy Systems: Experiences with Expert Lecture Series Combined with Workshops

    Get PDF
    The increased complexity of renewable energy systems derives in uncertain and vulnerable systems behavior, making necessary for energy experts to understand and apply resilience studies with interdisciplinary approaches. With this aim, we have designed a postgraduate course on resilience of energy systems, pursuing an “exchange interdisciplinarity” level that enables students to (i) become aware of competing approaches in terms of methods and theories stemming from different disciplines, and (ii) to critically argue on the suitability of presented concepts for energy systems design and management. The course aimed at achieving a sound level of exchange interdisciplinarity as defined in relevant literature. We chose the following specific teaching methods and didactic items to facilitate this aim and address the different challenges of interdisciplinary education identified from the literature: fundamental introduction (FI), expert interviews and deepening workshops. The FI aimed at providing a sound common basis for understanding the perspectives and approaches from different disciplines. The expert lecture series exposed students to the broadness of state-of-the-art approaches existing in resilience research for energy systems, while the deepening workshops allowed students to develop a deep and critical appraisal of the disciplinary approaches and their relations. The course impact is evaluated through the standard questionnaire for teaching evaluation from the University of Oldenburg. The evaluation shows that the course fostered a critical and interdisciplinary thinking, with a high and interactive participation through the use of multiple didactic measures. This is supported by the high satisfaction of the students, the high level of engagement and academic performance and the qualitative perception from the lecturers. Topics of similar complexity or interdisciplinarity in energy higher education, such as sustainability, technology assessment or energy systems analysis could also benefit from such a course design

    Conductance through an array of quantum dots

    Full text link
    We propose a simple approach to study the conductance through an array of NN interacting quantum dots, weakly coupled to metallic leads. Using a mapping to an effective site which describes the low-lying excitations and a slave-boson representation in the saddle-point approximation, we calculated the conductance through the system. Explicit results are presented for N=1 and N=3: a linear array and an isosceles triangle. For N=1 in the Kondo limit, the results are in very good agreement with previous results obtained with numerical renormalization group (NRG). In the case of the linear trimer for odd NN, when the parameters are such that electron-hole symmetry is induced, we obtain perfect conductance G0=2e2/hG_0=2e^2/h. The validity of the approach is discussed in detail.Comment: to appear in Phys. Rev.

    Quantum dot with ferromagnetic leads: a density-matrix renormalization group study

    Full text link
    A quantum dot coupled to ferromagnetically polarized one-dimensional leads is studied numerically using the density matrix renormalization group method. Several real space properties and the local density of states at the dot are computed. It is shown that this local density of states is suppressed by the parallel polarization of the leads. In this case we are able to estimate the length of the Kondo cloud, and to relate its behavior to that suppression. Another important result of our study is that the tunnel magnetoresistance as a function of the quantum dot on-site energy is minimum and negative at the symmetric point.Comment: 4 pages including 5 figures. To be published as a Brief Report in Phys. Rev.
    • …
    corecore